Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

1. Let $A = [a_{ij}]$ be a square, nonsingular matrix of size n with nonzero diagonal entries, and x and b are n-vectors. Consider the numerical solution of the linear system Ax = b by an iterative scheme of the form

$$x^{(k+1)} = Bx^{(k)} + c$$

with appropriate sizes of B and c.

- (a) Find the iteration matrix of the Jacobi iterations and the Gauss-Seidel iterations. That is, find B and c specifically for both methods.
- (b) Let n=2. Show that $\rho(B_J)=\sqrt{\left|\frac{a_{21}a_{12}}{a_{11}a_{22}}\right|}$ for the Jacobi iterations and $\rho(B_{GS})=\left|\frac{a_{21}a_{12}}{a_{11}a_{22}}\right|$ for the Gauss-Seidel iterations, where $\rho(B_J)$ and $\rho(B_{GS})$ are the spectral radii of the Jacobi and Gauss-Seidel iterations, respectively.
- (c) Let n=2. Prove that the Jacobi iterations converge if and only if Gauss-Seidel iterations converge.
- 2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix with eigenvalues

$$|\lambda_1| > |\lambda_2| \ge \dots \ge |\lambda_n| > 0,$$

and corresponding linearly independent eigenvectors v_1, v_2, \cdots, v_n , such that

$$\mathbf{A}v_i = \lambda_i v_i$$
, for $i = 1, 2, \dots, n$.

- (a) Give the condition(s) required for convergence of the Power Method to the dominant eigenvector. Write a simple pseudocode for the Power Method to approximate the eigenvector associated with the largest magnitude eigenvalue of \mathbf{A} .
- (b) Assume that the condition(s) in part (a) are satisfied. Show that the Power Method converges to the dominant eigenvector. (Assume that $\lambda_1 > 0$).
- (c) Using your solution in part (b), show that the Rayleigh Quotient converges to the dominant eigenvalue.
- (d) Suppose $|\lambda_{n-1}| > |\lambda_n|$. Modify the Power Method to approximate an eigenvector corresponding to the smallest magnitude eigenvalue. Explain why your modification works. Give the condition(s) required for convergence and write a simple pseudocode for this procedure.

- 3. Let $A \in \mathbb{C}^{n \times n}$ and assume there exists $p \geq 1$ such that $||A||_p < 1$, where $||\cdot||_p$ is a vector-induced matrix norm. Prove the followings:
 - (a) I A is invertible.

(b)
$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$$
.

(c)
$$||A||_q ||A^{-1}||_q \ge 1$$
, for all $1 \le q \le \infty$.

(d)
$$\frac{1}{1+\|A\|_p} \le \|(I-A)^{-1}\|_p \le \frac{1}{1-\|A\|_p}$$
.