Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

1. Consider the following single shift QR algorithm applied to a matrix $A \in \mathbf{R}^{\mathbf{m} \times \mathbf{m}}$:

where the shifts are given by $\sigma^{(k-1)} = (T^{(k-1)})_{m,m}$ for all $k \geq 1$. Assume that none of the shifts correspond to an eigenvalue of the matrix A and the diagonal coefficients of the matrices $R^{(k)}$ produced during the decomposition of $T^{(k-1)} - \sigma^{(k-1)}I$ are nonnegative. For $k \geq 1$ define the matrices

$$Q_k = Q^{(1)}Q^{(2)} \dots Q^{(k)}$$
 and $R_k = R^{(k)}R^{(k-1)} \dots R^{(1)}$.

- (a) Show that the sequence of matrices $T^{(k)}$ generated by single shift QR algorithm is orthogonally similar to the initial matrix A.
- (b) Show that

$$\prod_{j=0}^{k-1} (A - \sigma^{(j)}I) = Q_k R_k \quad \text{for} \quad k \ge 1.$$

(c) Verify that the first column of Q_k is

$$Q_k e_1 = \frac{1}{(R_k)_{1,1}} \left[\prod_{j=0}^{k-1} (A - \sigma^{(j)} I) \right] e_1$$

That is $Q_k e_1$ is essentially the vector obtained by using a shifted power iteration starting with e_1 .

(d) Suppose A is symmetric. Verify that the last column of Q_k is

$$Q_k e_m = (R_k)_{m,m} \left[\prod_{j=0}^{k-1} (A - \sigma^{(j)} I) \right]^{-1} e_m.$$

That is $Q_k e_m$ is essentially the vector obtained by using a shifted inverse power iteration starting with e_m .

- 2. Let A be an $m \times n$ matrix $(m \ge n)$.
 - (a) Define the concept of a full QR factorization of A and the concept of a reduced QR factorization of A.
 - (b) Describe the method of Householder triangulations for computing a reduced QR factorization of A.
 - (c) Let A be an matrix $n \times n$ and let a_j be its j^{th} column. Use a QR factorization of A to show that

$$|det A| \le \prod_{j=1}^n ||a_j||_2.$$

3. Let $A \in \mathbf{R}^{n \times n}$ be symmetric positive definite. The iteration for solving the system Ax = b is defined by

$$x^{k+1} = x^k - \alpha(Ax^k - b) \quad k \ge 0.$$

Assume that the eigenvalues of A satisfy $0 < \lambda_1 \le \lambda_2 \dots \le \lambda_n$.

- (a) Show that the iteration converges if and only if $0 < \alpha < \frac{2}{\lambda_n}$.
- (b) Show that the optimal choice of α is $\frac{2}{\lambda_1 + \lambda_n}$.

(You might use 2-norm).

- 4. Let $A \in \mathbf{C}^{\mathbf{m} \times \mathbf{n}}$ with m > n.
 - (a) Show that $A^*A + \epsilon I$ is Hermitian and positive definite for every positive value of ϵ .
 - (b) Assume A has full rank. Show how to choose ϵ so that the 2— norm condition number of

$$B = \left(\begin{array}{c} A \\ \epsilon^{1/2} I \end{array} \right),$$

where I is a $n \times n$ identity matrix, is equal to the square root of the 2-norm condition number of A.

(c) Use the reduced SVD of A to express the solution x to the problem

$$\min \left\| \left(egin{array}{c} A \\ \epsilon^{1/2} I \end{array}
ight) \!\!\!\!/ - \left(egin{array}{c} b \\ 0 \end{array}
ight)
ight\|_2,$$

where b is a $m \times 1$ vector.