Graduate Preliminary Examination
 Numerical Analysis I
 Duration: 3 Hours

1. Let A and B have order n matrices with A nonsingular. Consider solving the linear system

$$
\begin{aligned}
& A x_{1}+B x_{2}=b_{1} \\
& B x_{1}+A x_{2}=b_{2}
\end{aligned}
$$

with x_{1}, x_{2}, b_{1} and $b_{2} \in \mathbb{R}^{n}$.
(a) Find necessary and sufficient conditions for convergence of the iteration method for $m \geq 0$

$$
\begin{aligned}
& A x_{1}^{(m+1)}=b_{1}-B x_{2}^{(m)} \\
& A x_{2}^{(m+1)}=b_{2}-B x_{1}^{(m)}
\end{aligned}
$$

(b) Repeat part (a) for the iteration method for $m \geq 0$

$$
\begin{aligned}
A x_{1}^{(m+1)} & =b_{1}-B x_{2}^{(m)} \\
A x_{2}^{(m+1)} & =b_{2}-B x_{1}^{(m+1)}
\end{aligned}
$$

(c) Compare the convergence rates of the two methods given in part (a) and part (b)
2. Consider the least square problems of minimizing

$$
\rho^{2}(x)=\|b-A x\|^{2}
$$

Here A is $m \times n$ matrix of $\operatorname{rank} n,(m \geq n)$ and $\|\cdot\|$ is the Euclidean vector norm. Let

$$
A=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

be the $Q R$ decomposition of A where Q_{1}, Q_{2} and R are respectively, $m \times n, m \times$ $(m-n)$, and $n \times n$.
(a) Show that the solution of the least squares problem satisfies the $Q R$ equation $R x=Q_{1}^{T} b$ and that the solution is unique. Further show that $\rho(x)=\left\|Q_{2}^{T} b\right\|$.
(b) Use the $Q R$ equation to show that the least square solution satisfies the normal equations $\left(A^{T} A\right) x=A^{T} b$.
3. Given the vector $x=\left(\begin{array}{lllll}0 & 0 & 0 & 3 & 4\end{array}\right)^{T}$, by using Householder transformation, calculate a matrix Q for which $Q x$ will have zeroes in its last two positions.
4. Let A be a nonsingular matrix whose leading principal submatrices are all nonsingular. Partition A as

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} is, say $k \times k$.
(a) Is A_{11} singular or nonsingular? Explain.
(b) Show that there is exactly one matrix M such that

$$
\left(\begin{array}{cc}
I_{k \times k} & 0 \\
-M & I_{(n-k) \times(n-k)}
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & \tilde{A}_{22}
\end{array}\right)
$$

(c) Give the explicit formulas for M and \tilde{A}_{22}
(d) Show that \tilde{A}_{22} is nonsingular.
(e) Let $A_{11}=L_{1} U_{1}$ and $\tilde{A}_{22}=L_{2} U_{2}$ be the $L U$ factorization of A_{11} and \tilde{A}_{22}, respectively. Find matrices L_{12} and U_{12} such that $L U$ decomposition of A is

$$
A=\left(\begin{array}{cc}
L_{1} & 0 \\
L_{12} & L_{2}
\end{array}\right)\left(\begin{array}{cc}
U_{1} & U_{12} \\
0 & U_{2}
\end{array}\right)
$$

