Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

1. Let A and B have order n matrices with A nonsingular. Consider solving the linear system

$$Ax_1 + Bx_2 = b_1$$
$$Bx_1 + Ax_2 = b_2$$

with x_1, x_2, b_1 and $b_2 \in \mathbb{R}^n$.

(a) Find necessary and sufficient conditions for convergence of the iteration method for $m \ge 0$

$$Ax_1^{(m+1)} = b_1 - Bx_2^{(m)}$$

$$Ax_2^{(m+1)} = b_2 - Bx_1^{(m)}$$

(b) Repeat part (a) for the iteration method for $m \geq 0$

$$Ax_1^{(m+1)} = b_1 - Bx_2^{(m)}$$

$$Ax_2^{(m+1)} = b_2 - Bx_1^{(m+1)}$$

- (c) Compare the convergence rates of the two methods given in part (a) and part (b)
- 2. Consider the least square problems of minimizing

$$\rho^2(x) = ||b - Ax||^2.$$

Here A is $m \times n$ matrix of rank n, $(m \ge n)$ and $\|\cdot\|$ is the Euclidean vector norm. Let

$$A = (Q_1 \quad Q_2) \left(\begin{array}{c} R \\ 0 \end{array} \right)$$

be the QR decomposition of A where Q_1, Q_2 and R are respectively, $m \times n, m \times (m-n)$, and $n \times n$.

- (a) Show that the solution of the least squares problem satisfies the QR equation $Rx = Q_1^T b$ and that the solution is unique. Further show that $\rho(x) = ||Q_2^T b||$.
- (b) Use the QR equation to show that the least square solution satisfies the normal equations $(A^TA)x = A^Tb$.

- 3. Given the vector $x = (0 \ 0 \ 0 \ 3 \ 4)^T$, by using Householder transformation, calculate a matrix Q for which Qx will have zeroes in its **last two** positions.
- 4. Let A be a nonsingular matrix whose leading principal submatrices are all nonsingular. Partition A as

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right),$$

where A_{11} is , say $k \times k$.

- (a) Is A_{11} singular or nonsingular? Explain.
- (b) Show that there is exactly one matrix M such that

$$\begin{pmatrix} I_{k \times k} & 0 \\ -M & I_{(n-k) \times (n-k)} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & \tilde{A}_{22} \end{pmatrix}$$

- (c) Give the explicit formulas for M and \tilde{A}_{22}
- (d) Show that \tilde{A}_{22} is nonsingular.
- (e) Let $A_{11} = L_1U_1$ and $\tilde{A}_{22} = L_2U_2$ be the LU factorization of A_{11} and \tilde{A}_{22} , respectively. Find matrices L_{12} and U_{12} such that LU decomposition of A is

$$A = \left(\begin{array}{cc} L_1 & 0\\ L_{12} & L_2 \end{array}\right) \left(\begin{array}{cc} U_1 & U_{12}\\ 0 & U_2 \end{array}\right)$$