Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

- 1. Consider the matrix $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the Jacobi and Gauss-Seidel iteration matrices and their eigenvalues λ_i and μ_i , respectively. Show that $\mu_{max}=\lambda_{max}^2$
- 2. Consider the real system of linear equations

$$Ax = b$$
 (1)
$$\widehat{\gamma} \quad \widehat{x}$$

where A is non singular and satisfies

for all real v, where the Euclidean inner product is used here.

- (a) Show that (v, Av) = (v, Mv) for all real v where $M = \frac{1}{2}(A + A^T)$ is symmetric part of A.
- (b) Prove that

$$\frac{(v, Av)}{(v, v)} \ge \lambda_{min}(M) > 0$$

where $\lambda_{min}(M)$ is the minimum eigenvalue of M.

3. An overdetermined system Ax = b, (m > n) is written as

$$\left[\begin{array}{c} R \\ 0 \end{array}\right] x \approx \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$$

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $R \in \mathbb{R}^{n \times n}$, $b_1 \in \mathbb{R}^n$, $b_2 \in \mathbb{R}^{(m-n)}$, and $0 \in \mathbb{R}^{(m-n) \times n}$. Show that the least square solution x can be obtained from

$$Rx = b_1$$

and the residual vector r = b - Ax satisfies

$$||r||_2^2 = ||b_2||_2^2 .$$

- 4. (a) Describe the singular value decomposition (SVD) of the matrix $A \in \mathbb{C}^{m \times n}$. Include an explanation of the rank of A and how the SVD relates to the four fundamental subspaces
 - R(A) Range of A, $R(A^*)$ Range of A^*
 - N(A) Nullspace of A, N(A*) Nullspace of A*
 - (b) Perform SVD on the matrix

$$A = \left(\begin{array}{cc} 2 & 1\\ 2 & -1\\ 1 & 0 \end{array}\right)$$

(c) Compute the pseudo-inverse of A (the Moore-Penrose pseudo-inverse). Leave in factored form.