Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

1. (a) Show that the following matrix formula (where $q \in \mathbb{R}$) can be used to calculate \mathbf{A}^{-1} when the process

$$x^{(n+1)} = x^{(n)} + q(\mathbf{A}x^{(n)} - \mathbf{I})$$

converges.

- (b) When $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, give the values of q for which the process in (a) can be used. Which q yields the fastest convergence ?
- (c) Let **A** be a symmetric and positive definite $n \times n$ matrix with smallest eigenvalue λ_1 , and greatest eigenvalue λ_2 . Find q to get as fast convergence as possible ?
- [Hint: Fastest convergence is obtained when the spectral radius is minimized].
- 2. Given an $\mathbb{R}^{n \times m}$ matrix **A** with singular value decomposition $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}}$. Let \mathbf{A}^{\dagger} be the pseudo-inverse matrix of **A**.
 - (a) Verify that the singular value decomposition of \mathbf{A}^{\dagger} is $\mathbf{A}^{\dagger} = \mathbf{V}\mathbf{D}^{+}\mathbf{U}^{T}$, where \mathbf{D}^{+} is the transpose of \mathbf{D} with every non-zero entry replaced by its reciprocal.

(b) If
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$
, find the SVD of \mathbf{A} .

- (c) For the matrix **A** in part b), calculate \mathbf{A}^{\dagger} through the SVD of \mathbf{A}^{\dagger} .
- 3. Let **x** be the solution of A**x** = **b**, where A is square and invertible. Carry out the perturbation analysis when *both* the matrix A and the vector **b** is perturbed. Let $\tilde{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x}$ such that $(A + \delta A)\tilde{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$. Prove the following estimate:

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(A)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \right),$$

provided that δA is sufficiently small, in our case assume that $||A^{-1}|| \cdot ||\delta A|| < 1$. The matrix norm is the induced norm obtained from the vector norm used and $\kappa(A) = ||A|| \cdot ||A^{-1}||$.

- 4. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix where eigenvalues are given by $\lambda_1, \lambda_2, \lambda_3, \cdots, \lambda_n$. Suppose that $\beta \in \mathbb{R}$ and the vector $x \in \mathbb{C}^n$, $x \neq 0$ are such that $d = Ax \beta x$. Then,
 - (a) Show that

$$\min_{1 \le \mu \le n} |\beta - \lambda_{\mu}| \le \frac{\|d\|_2}{\|x\|_2}.$$

[Hint: Since A is Hermitian, the corresponding eigenvectors x_1, x_2, \dots, x_n form an orthonormal basis for \mathbb{C}^n].

(b) Apply this result to the matrix

$$A = \left[\begin{array}{rrr} 6 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 7 \end{array} \right]$$

with $\beta = 12$ and $x = (0.9, 1, 1.1)^T$ where A has eigenvalues $\lambda_1 = 13$, $\lambda_2 = 4$ and $\lambda_3 = 2$.