Graduate Preliminary Examination Numerical Analysis I
 Duration: 3 Hours

1. (a) Show that the following matrix formula (where $q \in \mathbb{R}$) can be used to calculate $\mathbf{A}^{-\mathbf{1}}$ when the process

$$
x^{(n+1)}=x^{(n)}+q\left(\mathbf{A} x^{(n)}-\mathbf{I}\right)
$$

converges.
(b) When $\mathbf{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, give the values of q for which the process in (a) can be used. Which q yields the fastest convergence ?
(c) Let \mathbf{A} be a symmetric and positive definite $n \times n$ matrix with smallest eigenvalue λ_{1}, and greatest eigenvalue λ_{2}. Find q to get as fast convergence as possible ?
[Hint: Fastest convergence is obtained when the spectral radius is minimized].
2. Given an $\mathbb{R}^{n \times m}$ matrix \mathbf{A} with singular value decomposition $\mathbf{A}=\mathbf{U D V}^{\mathbf{T}}$. Let \mathbf{A}^{\dagger} be the pseudo-inverse matrix of \mathbf{A}.
(a) Verify that the singular value decomposition of \mathbf{A}^{\dagger} is $\mathbf{A}^{\dagger}=\mathbf{V} \mathbf{D}^{+} \mathbf{U}^{\mathbf{T}}$, where \mathbf{D}^{+}is the transpose of \mathbf{D} with every non-zero entry replaced by its reciprocal.
(b) If $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 2 & 2\end{array}\right]$, find the SVD of \mathbf{A}.
(c) For the matrix \mathbf{A} in part b), calculate \mathbf{A}^{\dagger} through the SVD of \mathbf{A}^{\dagger}.
3. Let \mathbf{x} be the solution of $A \mathbf{x}=\mathbf{b}$, where A is square and invertible. Carry out the perturbation analysis when both the matrix A and the vector \mathbf{b} is perturbed. Let $\tilde{\mathbf{x}}=\mathbf{x}+\delta \mathbf{x}$ such that $(A+\delta A) \tilde{\mathbf{x}}=\mathbf{b}+\delta \mathbf{b}$. Prove the following estimate:

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(A)}{1-\kappa(A) \frac{\|\delta A\|}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}\right)
$$

provided that δA is sufficiently small, in our case assume that $\left\|A^{-1}\right\| \cdot\|\delta A\|<1$. The matrix norm is the induced norm obtained from the vector norm used and $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|$.
4. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix where eigenvalues are given by $\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots, \lambda_{n}$. Suppose that $\beta \in \mathbb{R}$ and the vector $x \in \mathbb{C}{ }^{n}, x \neq 0$ are such that $d=A x-\beta x$. Then,
(a) Show that

$$
\min _{1 \leq \mu \leq n}\left|\beta-\lambda_{\mu}\right| \leq \frac{\|d\|_{2}}{\|x\|_{2}}
$$

[Hint: Since A is Hermitian, the corresponding eigenvectors $x_{1}, x_{2}, \cdots, x_{n}$ form an orthonormal basis for $\left.\mathbb{C}^{n}\right]$.
(b) Apply this result to the matrix

$$
A=\left[\begin{array}{lll}
6 & 4 & 3 \\
4 & 6 & 3 \\
3 & 3 & 7
\end{array}\right]
$$

with $\beta=12$ and $x=(0.9,1,1.1)^{T}$ where A has eigenvalues $\lambda_{1}=13, \lambda_{2}=4$ and $\lambda_{3}=2$.

