1. (a) Show that the following matrix formula (where \(q \in \mathbb{R} \)) can be used to calculate \(A^{-1} \) when the process
\[
x^{(n+1)} = x^{(n)} + q(Ax^{(n)} - I)
\]
converges.
(b) When \(A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \), give the values of \(q \) for which the process in (a) can be used. Which \(q \) yields the fastest convergence?
(c) Let \(A \) be a symmetric and positive definite \(n \times n \) matrix with smallest eigenvalue \(\lambda_1 \), and greatest eigenvalue \(\lambda_2 \). Find \(q \) to get as fast convergence as possible?
[Hint: Fastest convergence is obtained when the spectral radius is minimized].

2. Given an \(\mathbb{R}^{n \times m} \) matrix \(A \) with singular value decomposition \(A = UDV^T \). Let \(A^\dagger \) be the pseudo-inverse matrix of \(A \).
 (a) Verify that the singular value decomposition of \(A^\dagger \) is \(A^\dagger = VD^+U^T \), where \(D^+ \) is the transpose of \(D \) with every non-zero entry replaced by its reciprocal.
 (b) If \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix} \), find the SVD of \(A \).
 (c) For the matrix \(A \) in part b), calculate \(A^\dagger \) through the SVD of \(A^\dagger \).

3. Let \(x \) be the solution of \(Ax = b \), where \(A \) is square and invertible. Carry out the perturbation analysis when both the matrix \(A \) and the vector \(b \) is perturbed. Let \(\tilde{x} = x + \delta x \) such that \((A + \delta A)\tilde{x} = b + \delta b \). Prove the following estimate:
\[
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|} \right),
\]
provided that \(\delta A \) is sufficiently small, in our case assume that \(\|A^{-1}\| : \|\delta A\| < 1 \). The matrix norm is the induced norm obtained from the vector norm used and \(\kappa(A) = \|A\| \cdot \|A^{-1}\| \).
4. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix where eigenvalues are given by $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_n$. Suppose that $\beta \in \mathbb{R}$ and the vector $x \in \mathbb{C}^n$, $x \neq 0$ are such that $d = Ax - \beta x$. Then,

(a) Show that

$$\min_{1 \leq \mu \leq n} |\beta - \lambda_\mu| \leq \frac{\|d\|_2}{\|x\|_2}.$$

[Hint: Since A is Hermitian, the corresponding eigenvectors x_1, x_2, \cdots, x_n form an orthonormal basis for \mathbb{C}^n].

(b) Apply this result to the matrix

$$A = \begin{bmatrix} 6 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 7 \end{bmatrix}$$

with $\beta = 12$ and $x = (0.9, 1, 1.1)^T$ where A has eigenvalues $\lambda_1 = 13$, $\lambda_2 = 4$ and $\lambda_3 = 2$.