1. (a) Fit a parabola of the form \(y = a + bx^2 \) to the following data by using the least squares approximation.

\[
\begin{array}{c|cccc}
 x & 0 & 1 & -2 & 3 \\
 y & 1 & 1 & -1 & 0 \\
\end{array}
\]

(b) Consider the matrix \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \). Find the singular value decomposition (SVD) of \(A \) and the rank of \(A \).

(c) Consider the linear system \(Ax = b \), for \(b \in \mathbb{R}^3 \) and \(A \) is the matrix given in part (b). State the condition such that the equation \(Ax = b \) has a solution, and the condition such that the solution is unique.

(d) Find the pseudoinverse of the matrix \(A \) given in part (b).

(e) Find the solution of the system given in part (c) for \(b = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} \).

2. (a) Prove the identity

\[A^{-1} - B^{-1} = A^{-1} (B - A) B^{-1} \]

and hence deduce that

\[\| A^{-1} - B^{-1} \| \leq \| A^{-1} \| \| B - A \| \| B^{-1} \| \]

(b) Prove that if \(B = A + \delta A \) where \(\| \delta A \| \| B^{-1} \| = \delta < 1 \), then it follows that

\[\| A^{-1} \| \leq \frac{1}{1 - \delta} \| B^{-1} \|, \quad \| A^{-1} - B^{-1} \| \leq \frac{\delta}{1 - \delta} \| B^{-1} \| \]

(c) Prove that if \(x = A^{-1} b \) and \(x + \delta x = (A + \delta A)^{-1} b \), then

\[\| \delta x \| \leq \frac{\delta}{1 - \delta} \| x + \delta x \| \quad \text{where} \quad \delta = \| \delta A \| \| B^{-1} \| < 1 \]

and

\[\| \delta x \| \leq \frac{\epsilon}{1 - \epsilon} \| x \| \quad \text{where} \quad \epsilon = \| \delta A \| \| A^{-1} \| < 1. \]
3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite matrix. Consider the following iteration

Choose $A_0 = A$
for $k = 0, 1, 2, \ldots$,
Compute Cholesky factor L_k of A_k (so $A_k = L_k L_k^T$)
Set $A_{k+1} = L_k^T L_k$
end

where L_k is lower triangular with positive diagonal elements.

(a) Show that A_k is similar to A and that A_k is symmetric positive definite (thus the iteration is well-defined).

(b) Consider

$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}, \quad a \geq c$

For this matrix, perform one step of algorithm above and write down A_1.

(c) Use the result from (b) to argue that A_k converges to the diagonal matrix $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, where the eigenvalues of A are ordered as $\lambda_1 \geq \lambda_2 > 0$.

4. Given the matrix

$A = \begin{bmatrix} 2 & 3 \\ -2 & -6 \\ 1 & 0 \end{bmatrix}$

(a) Find the reduced QR-factorization by applying Gram Schmidt orthogonalization to the columns of A.

(b) Find the full QR-factorization of A?