Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. Find the value of x for which $f(x)=2$ by using the following table

x	0	1	2	3
$f(x)$	0	1	4	9

2. (a) Interpolate the function $\ln (x)$ by a quadratic polynomial at $x=10,11,12$.
(b) Estimate the error at $x=11.1$ when approximating $\ln (x)$ by the interpolating polynomial found in part (a).
(c) How does the sign of the error depend on x ?
3. Let $f(x)=1+\frac{1}{2 x}$. Answer the following questions.
(a) Apply the fixed point iteration by taking the initial point $x_{0}=1$ to compute the points x_{1} and x_{2}.
(b) Explain analytically if the iteration converges or diverges. Give reason.
(c) Explain graphically whether the iteration converges or diverges. (Draw a graph to show how the iteration proceeds).
4. Given that the function f has continuous second derivative on the interval $[0,1]$. Prove that there exists a point $\xi \in(0,1)$ such that the relation

$$
\int_{0}^{1} x f(x) d x=\frac{1}{2} f\left(\frac{2}{3}\right)+\frac{1}{72} f^{\prime \prime}(\xi)
$$

is satisfied.

