Graduate Preliminary Examination Numerical Analysis II Duration: 3 Hours

1. Consider the error $e(x) = f(x) - p_n(x)$ in Chebyshev interpolation $p_n(x)$ for a function f(x) which is continuous in a general interval [a, b]. The roots of k - th degree Chebyshev polynomial $T_k(x)$ are given by

$$x_i = \cos \frac{(2i+1)\pi}{2k}, \quad i = 0, 1, \dots k - 1 \quad \text{when} \quad x \in [-1, 1].$$

Show that

$$\| e(x) \|_{\infty} \le \frac{2}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1} \| f^{n+1} \|_{\infty}$$
 when $x \in [a,b].$

2. Let the function f(x) be defined as

$$f(x) = \begin{cases} c_1 x + c_2 (x-1)^3, & x \in (-\infty, 0], \\ c_3 x + c_4 (x-1)^3, & x \in [0, 1], \\ c_5 x + c_6 (x-1)^3, & x \in (1, \infty). \end{cases}$$

- (a) Determine the relation between the coefficients c_1, \dots, c_6 for which f(x) is a cubic spline.
- (b) Find the values of c_1, \dots, c_6 so that the cubic spline from part (a) interpolates

_	x	0	1	2
	f(x)	-2	2	7

3. Let w(x) be a positive continuous weight function on [a, b] with

$$\int_{a}^{b} w(x)dx = 1, \quad \int_{a}^{b} xw(x)dx = 2, \quad \int_{a}^{b} x^{2}w(x)dx = 5,$$
$$\int_{a}^{b} x^{3}w(x)dx = 10, \quad \int_{a}^{b} x^{4}w(x)dx = 30.$$

(a) Derive the two-point Gaussian quadrature formula

$$\int_{a}^{b} f(x)w(x)dx \approx A_{1}f(x_{1}) + A_{2}f(x_{2})$$

which is exact for all polynomials of degree ≤ 3 .

- (b) Find the error for the Gaussian quadrature formula obtained in part (a).
- 4. Consider the Newton method to find a root α of the equation f(x) = 0;

$$x_{n+1} = x_n - \frac{f(x_n)h}{f(x_n+h) - f(x_n)}$$
 where $0 < h < 1/5$.

Assume that f has two continuous derivatives. Also, for all x,

 $1 \le f'(x) \le 2$ and $|f''(x)| \le 2$.

If the first guess is quite good, $|x_0 - \alpha| \leq 1/5$. Show that $x_n \to \alpha$. (You may find it useful to show that first that $|x_n - \alpha| \leq 1/5$, for all n).