Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. Consider the error $e(x)=f(x)-p_{n}(x)$ in Chebyshev interpolation $p_{n}(x)$ for a function $f(x)$ which is continuous in a general interval $[a, b]$. The roots of $k-t h$ degree Chebyshev polynomial $T_{k}(x)$ are given by

$$
x_{i}=\cos \frac{(2 i+1) \pi}{2 k}, \quad i=0,1, \cdots k-1 \quad \text { when } \quad x \in[-1,1] .
$$

Show that

$$
\|e(x)\|_{\infty} \leq \frac{2}{(n+1)!}\left(\frac{b-a}{4}\right)^{n+1}\left\|f^{n+1}\right\|_{\infty} \quad \text { when } \quad x \in[a, b] .
$$

2. Let the function $f(x)$ be defined as

$$
f(x)= \begin{cases}c_{1} x+c_{2}(x-1)^{3}, & x \in(-\infty, 0], \\ c_{3} x+c_{4}(x-1)^{3}, & x \in[0,1], \\ c_{5} x+c_{6}(x-1)^{3}, & x \in(1, \infty) .\end{cases}
$$

(a) Determine the relation between the coefficients c_{1}, \cdots, c_{6} for which $f(x)$ is a cubic spline.
(b) Find the values of c_{1}, \cdots, c_{6} so that the cubic spline from part (a) interpolates

x	0	1	2
$f(x)$	-2	2	7

3. Let $w(x)$ be a positive continuous weight function on $[a, b]$ with

$$
\begin{aligned}
& \int_{a}^{b} w(x) d x=1, \quad \int_{a}^{b} x w(x) d x=2, \quad \int_{a}^{b} x^{2} w(x) d x=5, \\
& \int_{a}^{b} x^{3} w(x) d x=10, \quad \int_{a}^{b} x^{4} w(x) d x=30 .
\end{aligned}
$$

(a) Derive the two-point Gaussian quadrature formula

$$
\int_{a}^{b} f(x) w(x) d x \approx A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

which is exact for all polynomials of degree ≤ 3.
(b) Find the error for the Gaussian quadrature formula obtained in part (a).
4. Consider the Newton method to find a root α of the equation $f(x)=0$;

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right) h}{f\left(x_{n}+h\right)-f\left(x_{n}\right)} \quad \text { where } \quad 0<h<1 / 5 .
$$

Assume that f has two continuous derivatives. Also, for all x,

$$
1 \leq f^{\prime}(x) \leq 2 \quad \text { and } \quad\left|f^{\prime \prime}(x)\right| \leq 2
$$

If the first guess is quite good, $\left|x_{0}-\alpha\right| \leq 1 / 5$. Show that $x_{n} \rightarrow \alpha$. (You may find it useful to show that first that $\left|x_{n}-\alpha\right| \leq 1 / 5$, for all n).

