Graduate Preliminary Examination
Numerical Analysis II
Duration: 3 Hours

1. Let $f(x)$ has the following values:

$$
f(0)=1, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f(1)=2, \text { and } f^{\prime \prime \prime}(1)=72
$$

Find a polynomial $p(x)$ of minimal degree interpolating this data, i.e.,

$$
f(0)=p(0), f(1)=p(1), f^{(j)}(0)=p^{(j)}(0) \text { for } j=1,2, \text { and } f^{(3)}(1)=p^{(3)}(1)
$$

2. Suppose a value V is computed with a numerical procedure $\phi(h)$ and that

$$
\lim _{h \rightarrow 0} \phi(h)=V
$$

Assume there exists an asymptotic error expansion for $\phi(h)$ of the form

$$
V-\phi(h)=c_{1} h+c_{2} h^{2}+c_{3} h^{3}+\ldots
$$

(a) How should the values $\phi(h)$ and $\phi\left(\frac{h}{3}\right)$ be combined to yield an approximation to V which is $O\left(h^{2}\right)$?
(b) How should the values $\phi(h), \phi\left(\frac{h}{2}\right), \phi\left(\frac{h}{3}\right)$ be combined to yield an approximation to V which is $O\left(h^{3}\right)$?
3. The following parts are independent.
(a) Use the method of undetermined coefficients to construct a quadrature formula of the type

$$
\int_{0}^{1} f(x) d x=a f(0)+b f(1)+c f^{\prime \prime}(w)+E(f)
$$

having maximum degree of exactness k. Find a, b, c, w and k. $(E(f)$ denotes the error term).
(b) The following quadrature formula integrates polynomials of degree ≤ 2 exactly:

$$
\int_{0}^{h} f(x) d x \approx \frac{3 h}{4} f\left(\frac{h}{3}\right)+\frac{h}{4} f(h)
$$

By using Peano Kernel theorem, derive an error bound of the form $C h^{4}$ for this quadrature rule. Here C is a constant independent of h and assume $f \in C^{3}[0, h]$.
4. Suppose that the iterative method of the form

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{h\left(x_{n}\right)}
$$

converges to a point α which is a root of the function $f(x)$, but not the root of the function $h(x)$. Find the relationship(s) between $f(x)$ and $h(x)$ such that the order of the convergence of the method is 3 .

