Graduate Preliminary Examination
Numerical Analysis II
Duration: 3 Hours

1. The following integration formula is Gaussian quadrature type
\[\int_{-1}^{1} f(x) \, dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) \]

(a) Derive this formula.
(b) Determine a formula for the integration
\[\int_{a}^{b} f(t) \, dt \]

(c) By using part (a) and (b), evaluate
\[\int_{0}^{\pi/2} t \, dt \]

2. Assume that \(f \) be a 3 times continuously differentiable function near a root \(\alpha \). Show that the iterative process
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} - \frac{[f(x_n)]^2 f''(x_n)}{2[f'(x_n)]^3} \]

is a third order process for solving \(f(x) = 0 \).

3. Estimate the multiple integral
\[I = \int_{0}^{1} \int_{-1}^{1} e^{x} \left(x + \frac{1}{y}\right) \, dy \, dx \]

numerically by using
(a) Trapezoidal rule in both \(x \) and \(y \) directions.
(b) Composite Trapezoidal rule in \(x \) direction and Trapezoidal rule in \(y \) direction.
4. By using Newton form of an interpolating polynomial show that

(a) If \(p(x) \in \mathcal{P}_n \) (the set of all n-th degree polynomials) interpolates a function \(f \) at a set of \(n + 1 \) distinct nodes \(x_0, x_1, \ldots, x_n \) and if \(t \) is a point different from the nodes, then

\[
 f(t) - p(t) = f[x_0, x_1, \ldots, x_n, t] \prod_{j=0}^{n} (t - x_j).
\]

(b) If \(f \in C^n[a, b] \) and if \(x_0, x_1, \ldots, x_n \) are distinct points in \([a, b] \) then there exists a point \(\eta \in (a, b) \) such that

\[
 f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\eta)}{n!}.
\]

(c) If \(f \) is a polynomial of degree \(k \), then for \(n > k \),

\[
 f[x_0, x_1, \ldots, x_n] = 0.
\]