TMS

Fall 2009
Ordinary Differential Equations

1. Consider the differential equation

$$
y^{\prime}=y g(t, y)
$$

where g and $\frac{\partial g}{\partial y}$ are defined and continuous for all $(t, y) \in R^{2}$. Show that
(a) if $y=y(t), t \in(a, b)$, is a solution satisfying $y\left(t_{0}\right)=y_{0}>0, t_{0} \in(a, b)$, then $y(t)>0$ for all $t \in(a, b)$
(b) if $y=y(t), t \in(a, b)$, is a solution satisfying $y\left(t_{0}\right)=y_{1}<0, t_{0} \in(a, b)$, then $y(t)<0$ for all $t \in(a, b)$
2. Consider the linear system

$$
\dot{x}=A(t) x
$$

where A is a continuous for all $t \in J \subseteq R$.
Let $\Phi\left(t, t_{0}\right)$ be a matrix solution of the above system satisfying $\Phi\left(t_{0}, t_{0}\right)=I$.
(a) Show that $x(t)=\Phi\left(t, t_{0}\right) x_{0}$ is the unique solution of the system satisfying $x\left(t_{0}\right)=x_{0}$.
(b) Show that $\Phi\left(t, t_{0}\right)=\Phi\left(t, t_{1}\right) \Phi\left(t_{1}, t_{0}\right), t_{1} \in J$.
(c) Show that $\frac{\partial \Phi(t, s)}{\partial s}=-\Phi(t, s) A(s), t, s \in J$.
(d) Let $X(t):=\Phi(t, 0), 0 \in J$. Show that $\Phi\left(t, t_{0}\right)=X\left(t-t_{0}\right)$ if and only if A is a constant matrix.
3. Find the Folquet multipliers for the periodic system

$$
\dot{x}=\left[\begin{array}{cc}
1 & 1 \\
0 & \frac{\cos t+\sin t}{2+\sin t-\cos t}
\end{array}\right] x
$$

and deduce that there is a periodic s9olution? What is the periodic solution?
4. Show that the zero solution of

$$
\dot{x}=-2 x+\frac{\sin t}{t^{2}+1} x^{3}
$$

is uniformly asymptotically stable.

