M E T U Department of Mathematics GRADUATE PRELIMINARY EXAM

Ordinary Differential Equations - September, 2015

Last	Name
Name:	

Q.1 Use Sturm Comparison Theory to find the <u>least</u> possible number of zeros of a nontrivial solution of $y'' + t^2y = 0$ on $(0, 5\pi)$. At most, how many zeros can have such a solution on $[0, 5\pi]$?

Q.2 Use Green's formula to find the differential operator adjoint to

$$L = \frac{d^2}{dt^2} + a_1(t)\frac{d}{dt} + a_0(t),$$

where a_0 and a_1 are real valued continuous functions on $t \in [a, b]$. Hence show that L is NOT formally self-adjoint. Then determine a function $\mu(t)$ appropriately to see that the operator $\mu(t)L$ is formally self-adjoint.

Q.3 Let $\Phi(t)$ and $\Psi(t)$ be two fundamental matrices for the linear homogeneous system $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$, where $\mathbf{A}(t)$ is an $n \times n$ continuous real matrix on $t \in (a, b)$.

(a) Show that there is an invertible constant matrix C such that $\Phi^{-1}(t)\Psi(t)={
m C}$.

(b) If $\mathbf{W}(t)$ is a fundamental matrix for the adjoint system $\mathbf{y}' = -\mathbf{A}^T(t)\mathbf{y}$, show also that $\mathbf{W}^T(t)\mathbf{\Phi}(t) = \mathbf{C}$.

Q.4 Consider the nonlinear system

$$dx/dt = 2y$$

$$dy/dt = -4\cos(x + \pi/2) + y$$

- (a) Find the critical points (equilibrium solutions), and deduce that the origin is an isolated critical point of the system.
- (b) Using the linear approximation, examine the stability properties of the critical point at the origin.
- (c) Explain why the trajectories of the linear system are good approximations to those of the nonlinear system, at least near the origin.