PRELIMINARY EXAM PROBLEMS Differential Equations (ODE), 3 hours, 2017/1

- 1. Suppose that $x_1(t)$ and $x_2(t)$ are the solutions of x' + c(t)x = 0 with $x_1(t_1) = a, x_2(t_2) = b$, where a, b are constants and t_1, t_2, t are members of an interval $I \subset R$, and c(t) is a continuous function. Solve the equation and show that $x_1(t) x_2(t) \to 0$ as $t_1 \to t_2$ and $a \to b$ for all $t \in I$.
- 2. Consider the IVP

$$x' = t^2 + x^2, x(0) = 0, 0 \le t \le a, |x| < b.$$

Show that

- (i) the solution exists on $0 \le t \le \min(a, \frac{b}{a^2 + b^2})$;
- (ii) the maximum value of $\frac{b}{a^2+b^2}$ is 1/(2a) for a fixed a;
- (iii) $h = \min(a, 1/(2a))$ is largest when $a = 1/\sqrt{2}$;
- (iv) discuss the maximum interval of existence on the basis of (ii) and (iii).
- 3. Solve the BVP,

$$y'' + y = 0, y(0) = 0, y(a) = y_0.$$
 (1)

4. Consider the following scalar equation

$$x' = a(t)x, (2)$$

where $a(t): R \to R$ is a continuous function. Prove that the zero solution, $x \equiv 0$, of the equation is uniformly stable if and only if

$$\int_{t_0}^t a(s)ds \le M < \infty, t \ge t_0 > 0,$$

with M constant.