PRELIMINARY EXAM PROBLEMS Differential Equations (ODE), 3 hours, 2013/2

- 1. Consider differential equations:
 - (i) $x' = x^2$, with initial condition $x(0) = x_0 > 0$,
 - (ii) $x' = x^2 + 1$, with initial condition $x(0) = x_0$.
 - a) Verify that the theorem on existence and uniqueness applies.
 - b) Solve for an explicit solution.
 - c) What is the maximal interval of the solution?
- 2. Find a bounded on R solution, $x^0(t)$, of the equation $x' = -x + \sin t$. Prove that
 - (a) $x^0(t)$ is a unique bounded solution of the equation;
 - (b) the bounded solution is 2π periodic;
 - (c) the bounded solution is uniformly asymptotically stable.
- 3. Let A(t) be a continuous matrix for all $t \in R$. Let P(t) be the matrix solution of

$$X' = A(t)X$$
.

Show that $P(t)P^{-1}(s) = P(t-s)$ for all $t, s \in R$, if and only if A(t) is a constant matrix.

4. Consider the following scalar equation

$$x' = \cos x. \tag{1}$$

- (a) Find all equilibriums of the equation.
- (b) Investigate stability of the solutions by linearization.