TMS. Differential Equations (ODE)

1. Draw integral curves (the phase portrait) of the scalar equation

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x-y}{|x-y|} \tag{1}
\end{equation*}
$$

2. Consider the Riccati equation

$$
\begin{equation*}
\frac{d y}{d x}=y^{2}+f(x) \tag{2}
\end{equation*}
$$

where $f(x)$ is an ω-periodic function. Prove that

$$
\int_{0}^{\omega}\left(y_{1}(x)+y_{2}(x)\right) d x=0
$$

where y_{1}, y_{2} are two ω-periodic solutions of the equation (2).
3. Analyze Lyapunov stability of the following initial value problem,

$$
\frac{d x}{d t}=\frac{a}{t} x, x(1)=0
$$

where a is a real parameter.
4. Solve the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-2 y=0
$$

with boundary conditions a) $\left.y(1)=1, \lim _{x \rightarrow \infty} y^{\prime}(x)=0, b\right) \lim _{x \rightarrow 0} y(x)=0, y^{\prime}(1)=1$.

