PRELIMINARY EXAM PROBLEMS

 Differential Equations (PDE), 3 hours, 13.09.20061. Let Ω denote the unbounded set $|x|>1$. Function $u \in C^{2}(\bar{\Omega})$ satisfies $\Delta u=0$ in Ω and $\lim _{x \rightarrow \infty} u(x)=0$. Show that

$$
\max _{\bar{\Omega}}|u|=\max _{\partial \Omega}|u| .
$$

Hint: Apply the maximum principle to a spherical shell.
2. (a). Solve the following problem

$$
x u_{x}+y u_{y}=u+1,\left.\quad u\right|_{\Gamma}=x^{2}
$$

if $\Gamma=\left\{(x, y): y=x^{2}\right\}$.
(b). Use d'Alembert's formula to determine $u(1,2)$ if

$$
\begin{aligned}
& u_{t t}-4 u_{x x}=0,0<x<2, t>0 \\
& u(x, 0)=\sqrt{x}, \quad u_{t}(x, 0)=2-x, \quad 0 \leq x \leq 2 \\
& u(0, t)=0, \quad u_{t}(2, t)=0
\end{aligned}
$$

3. Solve the following problem by Fourier's method.

$$
\begin{aligned}
& u_{t t}=u_{x x}+2 a, \quad 0<x<l, \quad a-\text { constant } \\
& u(0, t)=0, \quad u(l, t)=0, \quad u(x, 0)=0, \quad u_{t}(x, 0)=0 .
\end{aligned}
$$

4. Consider the following initial value problem

$$
\begin{array}{r}
u_{t}-u_{x x}=0, \quad 0<x<1, \quad t>0, \\
u(x, 0)=x, \quad 0 \leq x \leq 1, \\
u(0, t)=\sin t, \quad u(1, t)=\cos t, \quad t \geq 0 .
\end{array}
$$

Using the maximum principle, show that:
(a) $u(x, t) \leq 1$ for $t \in[0, T] \quad$ for every $T>0$;
(b) the problem has at most one solution.

