METU - Department of Mathematics Graduate Preliminary Exam

Partial Differential Equations

Duration : 180 min. Each question is 25 pts. Fall 2010

1. Determine if the following Cauchy problem has a solution in the neighbourhood of the point (1,0)

$$yz_x - xz_y = 0,$$

- a) z = 2y and x = 1
- b) z = 2y and x = 1 + y.
- 2. Let $\Omega = \{x \in \mathbb{R}^3 : |x| > 1\}$. Let $u \in C^2(\overline{\Omega})$ and suppose that u satisfies the Laplace equation in Ω

$$\Delta u(x) = 0$$
, for all $x \in \Omega$.

Show that

$$\max_{\bar{\Omega}} |u| = \max_{\partial \Omega} |u|$$

 $\text{if } \lim_{x \to \infty} u(x) = 0.$

3. For the wave equation in \mathbb{R}^3

$$u_{tt} = u_{xx} + u_{yy} + u_{zz}$$

find a general form of the plane wave solution. That is, a solution of the form u(t, x, y, z) = v(t, s) where $s = \alpha x + \beta y + \gamma z$ and $\alpha, \beta, \gamma \in \mathbb{R}$, $\alpha^2 + \beta^2 + \gamma^2 = 1$.

4. Consider the P.D.E.

$$\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} = x e^{-y}. \quad (*)$$

a) Determine the type of this PDE and find the characteristic curves.

b) Consider the given PDE as a first order PDE for $q = \frac{\partial z}{\partial y}$. Solve this first order PDE for q. Then find the general solution of (*). c) Find two different solutions z(x, y) which satisfy the condition

$$z(x,x) = 1$$
 for $x \in \mathbb{R}$.

d) True or false ? Explain.

There exists a solution z(x, y) such that z(x, x) = 1, $\frac{\partial z}{\partial \mathbf{n}} = 0$ where \mathbf{n} is the unit normal vector to the line y = x in \mathbb{R}^2 .