METU - Department of Mathematics
 Graduate Preliminary Exam

Partial Differential Equations

Duration : 180 min .
Fall 2010
Each question is 25 pts.

1. Determine if the following Cauchy problem has a solution in the neighbourhood of the point $(1,0)$

$$
y z_{x}-x z_{y}=0
$$

a) $z=2 y$ and $x=1$
b) $z=2 y$ and $x=1+y$.
2. Let $\Omega=\left\{x \in \mathbb{R}^{3}: \quad|x|>1\right\}$. Let $u \in C^{2}(\bar{\Omega})$ and suppose that u satisfies the Laplace equation in Ω

$$
\Delta u(x)=0, \text { for all } x \in \Omega
$$

Show that

$$
\max _{\bar{\Omega}}|u|=\max _{\partial \Omega}|u|
$$

if $\lim _{x \rightarrow \infty} u(x)=0$.
3. For the wave equation in \mathbb{R}^{3}

$$
u_{t t}=u_{x x}+u_{y y}+u_{z z}
$$

find a general form of the plane wave solution. That is, a solution of the form $u(t, x, y, z)=v(t, s)$ where $s=\alpha x+\beta y+\gamma z$ and $\alpha, \beta, \gamma \in \mathbb{R}$, $\alpha^{2}+\beta^{2}+\gamma^{2}=1$.
4. Consider the P.D.E.

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial y}=x e^{-y} \tag{*}
\end{equation*}
$$

a) Determine the type of this PDE and find the characteristic curves.
b) Consider the given PDE as a first order PDE for $q=\frac{\partial z}{\partial y}$.

Solve this first order PDE for q. Then find the general solution of $(*)$.
c) Find two different solutions $z(x, y)$ which satisfy the condition

$$
z(x, x)=1 \text { for } x \in \mathbb{R}
$$

d) True or false ? Explain.

There exists a solution $z(x, y)$ such that $z(x, x)=1, \frac{\partial z}{\partial \mathbf{n}}=0$ where \mathbf{n} is the unit normal vector to the line $y=x$ in \mathbb{R}^{2}.

