TMS. Differential Equations (PDE)

1. (a) Find the general solution of the equation

$$
\begin{equation*}
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}=-x y \tag{1}
\end{equation*}
$$

(b) Determine the solution of (1) passing through the curve $y=x^{2}, z=x^{3}$.
2. Reduce the equation $y u_{x x}+x u_{y y}=0$ to the canonical forms in the plane.
3. Suppose $u(x, t)$ is the solution to

$$
\begin{array}{ll}
u_{t}-u_{x x}=x, & 0<x<1, t>0 \\
u(0, t)=0, u(1, t)=0 & t \geq 0 \\
u(x, 0)=0 & 0 \leq x \leq 1
\end{array}
$$

Apply the maximum principle to show that $u(x, t) \leq \frac{x-x^{3}}{6}$ for $0<x<1$ and $t>0$.
4. Find a harmonic function $u(r, \theta)$ in the annulus $2<r<4$ with $u(2, \theta)=1$ and $u(4, \theta)=$ $\sin ^{2} 2 \theta$.

