PRELIMINARY EXAM PROBLEMS Differential Equations (PDE), 2020

1. Use the Fourier method to solve the problem

$$
\begin{gathered}
u_{t}-2 u_{x x}=0, \quad 0<t, \quad-1 / 2<x<1 / 2 \\
u(x, 0)=-x^{2}+1 / 4 \\
u(-1 / 2, t)=u(1 / 2, t)=0,0<t
\end{gathered}
$$

Hint: You may apply a shift of the variable x.
2. Prove that $3 x^{2} y-y^{3}$ is a harmonic function:
(a) use Laplace equation;
(b) do not use Laplace equation.
3. Reduce the equation

$$
y u_{x x}+x u_{y y}=0
$$

to the canonical forms in the plane.
4. Use the method of characteristics to solve the equation

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0
$$

with initial conditions:
(a) $u(1, y, z)=y^{2}+z^{2}$;
(b) $\left.u(x, y, z)\right|_{y^{2}+z^{2}=2}=\frac{2}{x^{2}}$.
5. (a) Find the general solution of the equation $u_{t t}+9 u=0$.
(b) Find a particular solution of the above equation with $u(x, 0)=e^{-3 x} \ln x, u_{t}(x, 0)=$ $x^{2} \cos x$.

