Partial Differential Equations

Problem 1. For the equation

$$xz_x + yz_y = z + 1$$

give an initial curve such that:

- (a) there exists infinitely many solutions passing through the initial curve;
- (b) there exists no solution passing through the initial curve.

Problem 2. Find a general form of a radially symmetric solution u = u(r, t), where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$, for the wave equation

$$u_{tt} = c^2 \Delta u$$
 $x \in \mathbb{R}^3, t \in \mathbb{R}.$

Problem 3. Let Ω be an open bounded domain in \mathbb{R}^2 . Suppose that $u \in C^2(\Omega)$ satisfies

$$u_{xx} + u_{yy} + xu_x + yu_y = 1, \qquad (x, y) \in \Omega$$

$$u(x, y) = 0 \qquad (x, y) \in \partial \Omega.$$

Show that $u(x,y) \leq 0$ in Ω .

Problem 4. For the following problem

$$u_{tt} + k^2 u_t = \Delta u,$$
 $(x, t) \in Q_T$
 $u(x, 0) = \phi(x),$ $u_t(x, 0) = \psi(x)$ $x \in D$
 $u(x, t) = 0,$ $(x, t) \in S_T$

where D is an open bounded domain in \mathbb{R}^3 and $Q_T = \{(x,t) : x \in D, 0 < t \leq T\}$, $S_T = \{(x,t) : x \in \partial D, 0 \leq t \leq T\}$. Show that: (a)

$$E(t) = \int_{D} \left[\frac{1}{2} u_t^2 + \frac{1}{2} |\nabla u|^2 \right] dx$$

is non-increasing function;

(b) the problem has at most one solution.