PRELIMINARY EXAM PROBLEMS Differential Equations (PDE), 2005/2, 3 hours

1. Solve the Dirichlet problem

$$
\begin{gathered}
u_{x x}+u_{y y}=0, \quad x^{2}+y^{2}<1 \\
u=y^{4}, \quad x^{2}+y^{2}=1
\end{gathered}
$$

2. (a). Find, for all positive and negative values of a constant λ, the real solutions of the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}=c^{2} \frac{\partial z}{\partial t}
$$

that are of the form $z=\mathrm{e}^{\lambda t} \phi(x)$.
(b). If c is not an integer multiple of π, show that there exists a solution of this equation which remains finite as $t \rightarrow \infty$, which is zero when $x=0$, and which assumes the value $\mathrm{e}^{-\mathrm{t}}$ when $x=1$. Find this solution.
3. (a). Let $u(x, t)$ be a solution of the equation

$$
\begin{equation*}
u_{t}-k u_{x x}=F(x, t), k>0 \tag{1}
\end{equation*}
$$

for $\{(x, t) \mid 0<x<L, t>0\}$, where L is a fixed positive number, and $u(x, t)$ is continuous in $\{(x, t) \mid 0 \leq x \leq L, t \geq 0\}$. Prove that the maximum of $u(x, t)$ is attained at $t=0$, or $x=0$, or $x=L$, if $F(x, t)$ is negative valued in $\{(x, t) \mid 0<x<L, t>0\}$.
(b). Construct a counter example if $F(x, t)$ in (1) is positive in the region.
4. The function $\frac{-1}{2 \pi} K_{0}(\alpha r)$ is a fundamental solution for the equation

$$
\nabla^{2} u-\alpha^{2} u=0 \quad \text { in } \quad \Omega
$$

where α is a constant, $\Omega \subset R^{2}$ and $K_{0}(\alpha r)$ is the zero order modified Bessel function of the second kind, r is the distance from a fixed point (ξ, η) to any point (x, y) in Ω.
Prove that the Green's function for the equation above defined by

$$
\begin{gathered}
\nabla^{2} G-\alpha^{2} G=\delta(x-\xi) \delta(y-\eta) \quad \text { in } \quad \Omega, \\
G=0 \quad \text { on } \quad \partial \Omega,
\end{gathered}
$$

is unique, where δ and ∇^{2} denote the Dirac Delta and Laplace operators respectively.

