METU - Department of Mathematics Graduate Preliminary Exam

Partial Differential Equations

February, 2009

Duration: 180 min.

1. Solve the Cauchy problem

$$u_y = u_x^3$$
, $u(x,0) = 2x^{3/2}$

2. The initial value problem

$$u_{tt} - c^2 u_{xx} = x^2, \quad t > 0, \quad x \in \mathbb{R}$$

 $u(x,0) = x, \quad u_t(x,0) = 0$

is given.

- a) First state the Cauchy-Kowalewski theorem for a linear equation and then decide whether the above problem has a unique solution or not.
 - b) Find a particular time-independent solution of the differential equation.
 - c) Find the solution of the given initial value problem.
- 3. a) State the uniqueness theorems for the solutions of Dirichlet and Neumann problems defined for the Laplace equation $\Delta u = 0$ in \mathbb{R}^3 .
 - b) Show that the solutions $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ of

$$\Delta u - [3 - (x_1^2 + x_2^2 + x_3^2)]u = 0$$

in

$$\Omega := \{ x \in \mathbb{R}^3 : |x_i| < 1, \ i = 1, 2, 3 \}$$

for the Dirichlet and Neumann problems are unique.

4. Let u be a solution of IVP

$$u_t - ku_{xx} = 0, x \in R, t > 0,$$

 $u(x,0) = f(x).$

where f(x) is continuous on R. Assume that u(x,t) tends to zero uniformly for t>0 as $x\to\pm\infty$. Show that $|u(x,t)\leq M, x\in R, t>0$, if $|f(x)|\leq M, x\in R$.