Partial Differential Equations

Problem 1. Find solution of the equation

$$
x y z_{x}+x z z_{y}=y z
$$

passing through the curve $z=1+y^{2}, x=1$ (if exists).
Problem 2. Using Green's first identity

$$
\iint_{\partial D} v \frac{\partial u}{\partial n} d S=\iiint_{D} \nabla v \cdot \nabla u d x+\iiint_{D} v \Delta u d x
$$

prove the uniqueness of solution for the Robin problem

$$
\Delta u=0 \quad \text { in } \quad D, \quad \frac{\partial}{\partial n} u(x)+a(x) u(x)=h(x) \quad \text { on } \quad \partial D,
$$

provided $a(x)>0$ on ∂D.
Problem 3. Solve the Dirichlet problem for the exterior of a circle

$$
\begin{array}{ll}
\Delta u=0, & x^{2}+y^{2}>a^{2} \\
u=h, & x^{2}+y^{2}=a^{2}
\end{array}
$$

and u bounded as $x^{2}+y^{2} \rightarrow \infty$, given that $h(a, \theta)=\sum_{n=1}^{\infty} \alpha_{n} \cos 2 n \theta$ (in polar coordinates (r, θ)).

Problem 4. Let $\Omega=\{(x, t): x \in(0, a), t \in(0, T]\}$ and
$\partial_{p} \Omega=\{(x, t): x=0, t \in[0, T]$ or $x=a, t \in[0, T]$ or $x \in[0, a], t=0\}$. Suppose $u \in C^{2}(\Omega) \cup C(\bar{\Omega})$ satisfies $u_{t}-u_{x x}+c u<0$, where $c \geq 0$, in Ω. Show that $\max _{\bar{\Omega}} u=\max _{\partial_{p} \Omega} u$ given that $\max _{\partial_{p} \Omega} u>0$.

