TMS. Differential Equations (PDE)

1. (a) Find the general solution of the equation

$$
\begin{equation*}
x z \frac{\partial z}{\partial x}+y z \frac{\partial z}{\partial y}=-x y \tag{1}
\end{equation*}
$$

(b) Determine the solution of (1) passing through the curve $y=x^{2}, z=x^{3}$.
2. Solve the Neumann problem

$$
\begin{gather*}
\Delta u=0, x^{2}+y^{2}<16 \\
\frac{\partial u}{\partial n}=y, x^{2}+y^{2}=16 \tag{2}
\end{gather*}
$$

3. Solve the following transport equation $u_{x}+y u_{y}+\frac{1}{x} u=0$ if $u(1, y)=e^{y}$.
4. Decompose the following boundary value problem,

$$
\begin{array}{r}
u_{t t}=c^{2} u_{x x}+f(t, x), \\
u(0, x)=g(x), u_{t}(0, x)=n(x), \\
u(t, 0)=m_{1}(t), u(t, 5)=m_{2}(t) \tag{3}
\end{array}
$$

into three systems more suitable for solution.

