I. a) Let A_n be a sequence of measurable sets with $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Prove that $\mu(\overline{lim}A_n) = 0$

Hint: $\overline{\lim} A_n = \bigcap_{k=1}^{\infty} \bigcup_{n \geq k} A_n$

b) Let $f \in L_p(\mu)$ and $\epsilon > 0$. Show that

$$\mu(\{x \in X : |f(x)| \ge \epsilon\}) \le \epsilon^{-p} \int |f|^p d\mu$$

- II. a) Show that $f(x) = \frac{1}{\sqrt{x}}$ is Lebebsgue integrable over [0, 1].
 - b) Compute $\lim_n \int_0^1 \frac{n \sin x}{1 + n^2 \sqrt{x}} dx$ and justify your calculations.
- III. Assume $\mu(X) < \infty$. If f_n is a sequence of measurable functions on X such that $f_n \to f$ a.e. then prove that $f_n \to f$ [meas] also holds.

 State the theorem(s) you used.
- IV. Assume that $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are two continuous functions such that $f(x)\leq g(x)$ holds for all $x\in[a,b]$. Set $A=\{(x,y)\in\mathbb{R}^2:x\in[a,b]$ and $f(x)\leq y\leq g(x)\}$.
 - a) Show that A is a closed set (and hence a measurable subset of \mathbb{R}^2)
 - b) If $h:A\to\mathbb{R}$ is a continuous function, then show that h is Lebesque integrable over A and that

$$\int_{A} h d\lambda = \int_{a}^{b} \left(\int_{f(x)}^{g(x)} h(x, y) dy \right) dx$$

1