METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2012 - TMS EXAM

- 1. Prove disprove:
- a) If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then the improper integral $\int_{-\infty}^{\infty} f(x) \ dm(x)$ is convergent.
- b) If $\int_{-\infty}^{\infty} f(x) \ dm(x)$ is convergent then $f \in L^1$.
- 2. Compute $\lim_{n\to\infty}\sum_{k=0}^{\infty}\left(\frac{n}{2n+k}\right)^k$

(Hint: Use a convergence theorem)

- **3.** Let $E \subset [0,1] \times [0,1]$ have the property that every horizontal section Ey is countable and every vertical section Ex has countable complement $[0,1] \setminus E_x$. Prove that E is not L-measurable.
- 4. Let (X, σ, μ) be a measure space.
- a) Define convergence in measure
- b) Let $\phi:\mathbb{C}\to\mathbb{C}$ be uniformly continuous. Let $f_n,f:X\to C$ be measurable and $f_n\to f$ in measure.

Show that $\phi \circ f_n$ converges to $\phi \circ f$ in measure.