## METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2013 - TMS EXAM

- 1. (35 pts.) Denote by  $\chi_A$  the characteristic function of  $A\subseteq [0,1]$
- a) Prove that  $\psi(t,x):=(t,\frac{x+\chi_A(t)}{2})$  is measurable if and only if A is measurable
- b) Suppose A is measurable, calculate the integral  $\int_{[0,1]\times[0,1]}\psi d\mu$  where  $\mu$  is the Lebesgue measure on  $[0,1]\times[0,1]$
- c) Give an example of  $A \subseteq [0,1]$  which is not Lebesgue measurable.
- 2. (20 pts.) Let  $\mu$  be counting measure on N. Interpret Fatou's lemma, the monotone and the dominated convergence theorems as statements about infinite series.
- 3. (25 pts.) a) Give an example of a continuous function  $f: \mathbb{R} \to \mathbb{R}$  which maps a Lebesgue measurable set onto a non-Lebesgue measurable set.
- b) Why the condinition  $|f_n| \leq g \in L_1$  in the Dominated convergence theorem cannot be replaced by  $|f_n(t)| \leq M \in \mathbb{R}^+$ .
- 4. (20 pts.) Given the counting measure  $\nu$  on  $P(\mathbb{R})$  and the Lebesgue measure  $\mu$  on the Lebesgue algebra  $\sum (\mathbb{R})$ .
- a) Show that  $\mu$  is absolutely continuous with respect to  $\nu$ .
- b) Explain why the Radon-Nikodym theorem is not applicable to measures  $\nu$  and  $\mu$ .