1.
(a) State the Lebesgue Dominated Convergence Theorem.
(b) Use (a) to evaluate
\[\lim_{n \to \infty} \int_0^1 \frac{dx}{\cos(x + \frac{1}{n}) x^{\frac{3}{2}}} \]
where \(dx \) denotes integration with respect to Lebesgue measure.
[Be sure to explain why the hypotheses are satisfied when you quote (a).]

2. Either prove or provide an explicit counterexample to each of the following assertions: (you may quote without proof familiar relations and containments between \(L^p \)-spaces)
 (a) If \(f, g \in L^2([0, 1]) \) then \(fg \in L^2([0, 1]) \). (Lebesgue measure)
 (b) If \(f, g \in L^2(\mathbb{R}) \) then \(fg \in L^2(\mathbb{R}) \). (Lebesgue measure)
 (c) If \(f, g \in L^2(\mathbb{R}) \) then \(fg \in \ell^2 \). (counting measure)

3. Let \(\lambda \) denote Lebesgue measure on the real line.
 (a) Prove that there is an open set \(\mathcal{O} \) that is dense in \(\mathbb{R} \) with \(\lambda(\mathcal{O}) < 1 \).
 (b) Let \(\mathcal{O} \) be any set satisfying the conclusion to part (a). Prove that \(\mathbb{R} \setminus \mathcal{O} \) is uncountable.
 (c) Let \(\mathcal{O} \) be any set satisfying the conclusion to part (a). Prove that \(\mathbb{R} \setminus \mathcal{O} \) is not compact.

4. Let \(m \) be Lebesgue measure on \([0, 1]\) and \(n \) be counting measure and
 \[f(x, y) = \begin{cases}
 1 & \text{if } x = y \\
 0 & \text{if } x \neq y.
 \end{cases} \]
 (a) Show \(\int \int f(x, y)dm(x)dn(y) \neq \int \int f(x, y)dn(y)dm(x) \).
 (b) State the Fubini-Tonelli Theorem and state why the above result does not contradict the Theorem.