METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2015 - TMS EXAM

1. Formulate the Egoroff theorem (= the third Littlewood principle) and show that it fails in every measure space with infinite σ -finite measure. Hint: Consider $f_n = \chi_{[n,n+1]}$

2. Let (X, \mathcal{A}, μ) be a measure space, and suppose $X = \bigcup_n X_n$, where $\{X_n\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Use the monotone convergence theorem and the linearity of the integral to prove that, if f is a non-negative measurable real-valued function on X,

$$\int_{X} f d\mu = \sum_{n} \int_{X_{n}} f d\mu$$

Hint: Let
$$f_n = \sum_{k=1} f \chi_{X_k} = f \chi_{\cup_1^n X_k}$$

3. Evaluate $\lim_{k\to\infty}\sum_{n=1}^{\infty}e^{-kn^2}$ and prove your answer by using a measure theory theorem.

Hint: Let $f_k : \mathbb{N} \to [0, \infty)$ be defined by $f_k(n) = e^{-kn^2}, n \in \mathbb{N}$.

4. Using the Fubini/Tonelli theorems to justify all steps, evaluate the integral

$$\int_{0}^{1} \int_{y}^{1} x^{-3/2} \cos(\frac{\pi y}{2x}) dx dy$$

Hint: Consider $\int \int |x^{-3/2} \cos(\frac{\pi y}{2x})| dy dx$ and apply to Tonelli's theorem.