METU MATHEMATICS DEPARTMENT Real Analysis September 2017 - TMS

- 1. Let (E, μ) be a finite measure space. Let $\{f_n\}$ be a sequence of measurable complex valued functions such that $\forall x \in E$, $\lim f_n(x) = f(x)$ exists.
- a) Show that $\forall \epsilon > 0 \ \forall \delta > 0$, $\exists N$, and a measurable set F with $\mu(F) < \delta$ such that.

$$|f_n(x) - f(x)| < \epsilon \ \forall n \ge N \ \forall x \in E \setminus F.$$

- b) Is the above result true if $\mu(E) = \infty$?
- 2. Calculate $\int_0^\infty \frac{\sin x}{x} dx$.

(Hint: Observe that $\forall R > 0$, $\int_0^R \frac{\sin x}{x} dx = \int_0^R \int_0^\infty \sin x \ e^{-xt} dt dx$ and use Fubini-Tonelli Theorems)

3. Let f be a bounded, real-valued, measurable function on [0,1], s.t. $\int x^n f dm = 0$ for $n=0,1,2,\cdots$ where m denotes the Lebesgue measure.

Show that f(x) = 0 a.e.

- **4.** Let $f:[0,1] \to \mathbb{R}$ be Lebesgue-measurable.
- a) Prove that if $\int_0^1 f(x)dx$ (in Riemann sense) exists then $f \in L^1([0,1])$.
- b) Is the converse true? Prove or disprove (by giving an example).