Real Analysis Preliminary Exam September 2025

- 1. (12+13 pts) If the following statement is true then prove it. Otherwise, give a counterexample. Show your work with details. m refers the Lebesgue measure.
 - (a) Let $p \geq 1$. $L^{p+1}(\mathbb{R}, m) \subset L^p(\mathbb{R}, m)$.
 - (b) Let $p \ge 1$. $L^{p+1}([0,1], m) \subset L^p([0,1], m)$.
- 2. (25 pts) Give an example of a compact set in \mathbb{R} with strictly positive Lebesgue measure and empty interior. Show that your example works.
- 3. (25pts) Let $f \in L^+$ and $\int f < \infty$. Show that $\{x : f(x) > 0\}$ is σ -finite.
- 4. (25pts) Let X = Y = [0, 1], $\mu = \text{Lebesgue measure}$ and $\nu = \text{counting measure}$, $D = \{(x, x) : x \in [0, 1]\}$ be the diagonal in $X \times Y$. Compute the iterated integrals $\iint_{X \times Y} \chi_D d\mu d\nu$ and $\iint_{X \times Y} \chi_D d\nu d\mu$, where χ_D is the characteristic function of D.