METU - Department of Mathematics Graduate Preliminary Exam

Real Analysis

February, 2009

Duration: 180 min.

- 1. Characterize metric spaces X for which the open sets form a σ -algebra.
- **2.** a) Show that if $f: \mathbb{R} \to \mathbb{R}$ is continuous almost everywhere then f is a Lebesgue measurable function.
- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that the derivative f' of f is a Lebesgue measurable function.
- 3. Construct an example of a subset $D \subseteq \mathbb{R}^2$ satisfying the following properties:
 - (i) the Lebesgue measure of $D \cap U$ is zero for every open set $U \subseteq \mathbb{R}^2$;
- (ii) the set $D \cap U$ is of the second category for every nonempty open set $U \subseteq \mathbb{R}^2$;
 - (iii) for every point $(x_0, y_0) \in D$ the line $y = y_0 + x_0 x$ is a subset of D.
- **4.** a) State the Radon Nikodym theorem for the interval [0, 1] with the Lebesgue measure.
 - b) State the Hahn decomposition theorem.
- c) Derive the Hahn decomposition theorem for the interval [0, 1] from the Radon Nikodym theorem and the Jordan decomposition theorem.