METU MATHEMATICS DEPARTMENT REAL ANALYSIS FEBRUARY 2014 - TMS EXAM

1.

- a) State and prove Fatou's Lemma.
- b) Show that Fatou's Lemma may not be true, even in the presence of uniform convergence.

(Hint: You may find $f_n(x) = -\frac{1}{n}\chi_{[0,n]}$ on $\mathbb R$ useful).

2. Let E be a measurable set of finite measure; (f_n) be a sequence of measurable real valued fuction on E. Show that for given $\epsilon > 0$ and $\delta > 0 \exists$ measurable A in E with measure $m(A) < \delta$ and a natural number N such that $\forall x \not\in A$ and all $n \ge N$, $|f_n(x) - f(x)| < \epsilon$.

3.

- a) Let (X, \wedge, μ) be a finite measure space. Let (f_n) , (g_n) be two sequences of measurable functions and $f_n \to f$ in measure μ and $g_n \to g$ in measure μ . Show that $f_n g_n \to f g$ in measure.
- b) By considering $f_n(X) = \sqrt{x^4 + \frac{x}{n}}$ and $f(x) = x^2$ on $(0, \infty)$ with Lebesgue measure, show that the conclusion may fail if the space has no finite measure.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Show that $\lim_{t\to\infty} \int f(x) \cos(xt) d\lambda(x) = 0$ when λ is the Lebesgue measure.