Feb. 2016

1) Let (X, \sum, μ) be a measure space and let $f: X \to [0, \infty]$ be measurable. For $E \in \sum$ define $\nu(E) = \int_E f d\mu$ Show that ν is a measure (You will need a convergence theorem for countable additivity)

2) Let
$$f_n(x) = \frac{n^{3/2}x}{1 + n^2x^2}$$
 Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$

- 3) Let (f_n) be a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. Then prove that $\int |f_n f| \to 0 \Leftrightarrow \int |f_n| \to \int |f|$.
 - 4) Let h and g be integrable functions on (X, μ) and (Y, ν) , and define f(x,y) = h(x)g(y) Then show that f is integrable on $X \times Y$ and

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X h d\mu \int_Y g d\nu$$

Hint: Take $h=X_A$, $g=X_B$ where $A\subset X, B\subset Y$ are measurable sets.