Preliminary Exam - February, 2017 Real Analysis

- 1) Let (X, \mathcal{M}, μ) be a measure space. Define $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by $\mu^*(A) = \inf \{ \mu(E) : E \in \mathcal{M}, A \subset E \}$. Prove that
 - a) μ^* is an outer measure on X.
 - b) $\forall A \in \mathcal{P}(X) \; \exists E \in \mathcal{M} \text{ such that } A \subset E \text{ and } \mu^*(A) = \mu(E).$
- 2) Suppose that $\{f_n\}$ is a sequence of Lebesgue measurable functions on [0,1] such that $\lim_{n\to\infty}\int_0^1|f_n|dm=0$ and there is an integrable function g on [0,1] such that $|f_n|^2\leq g$, for each n.
 - a) Prove that $\lim_{n\to\infty}\int_0^1 |f_n|^2 dm = 0$
 - b) Prove that if $\lim_n f_n = f$ exists a.e. then f integrable on [0, 1] and $\int f dm = 0$
- 3) If f is a complex valued measurable function on (X, \mathcal{M}, μ) , define

$$R_f = \{z : \mu(\{x : |f(x) - z| < \epsilon\}) > 0 \ \forall \epsilon > 0\}$$

Show that

- a) R_f is closed. b) If $f \in L^{\infty}$ then R_f is compact.
- 4) Let (X, \mathcal{M}, μ) be an arbitrary measure space and define ν on \mathcal{M} by $\nu(A) = 0$ if $\mu(A) = 0$; and $\nu(A) = \infty$ if $\mu(A) > 0$.
 - a) Show that ν is a measure on X and $\nu << \mu$. b) Find $\frac{d\nu}{d\mu}$.