Preliminary Exam - February, 2018 Real Analysis

- 1) a) Let $f: X \to \mathbb{R}$ be integrable, where (X, μ) is a measure space. Show that the set $S = \{x: f(x) \neq 0\}$ is of σ -finite measure.
 - b) Evaluate $\lim_{k\to\infty}\sum_{n=1}^{\infty}e^{-n^2/k}$

Justify your answer using measure theory theorems.

- 2) a) Let $f \in L_p[0,1]$ and let $\epsilon > 0$. Show that if $p \ge 1$ then $m(\{x \in [0,1] : |f(x)| \ge \epsilon\}) \le \epsilon^{-p} \int |f|^p dm$
 - b) Let $f_n \in L_p[0,1] \forall n$. Show that if

 $\lim_{n\to\infty} ||f_n - f||_p = 0 \quad \text{holds in} \quad L_p[0,1] \quad \text{then} \quad (f_n) \text{ converges in measure to } f.$

- 3) a) Show that if $f \in L_2 \cap L_4$ then $f \in L_3$ holds.
 - b) Let $1 \le p < q < \infty$ Show $L_q[0,1] \subset L_p[0,1]$ holds.
- 4) a)State the Fubini Theorem

b) Using
$$f(x,y) = \begin{cases} 2-2^{-x} & \text{if } x=y\\ -2+2^{-x} & \text{if } x=y+1\\ 0 & \text{otherwise} \end{cases}$$

where $f: X \times Y \to \mathbb{R}$, $X = Y = \mathbb{N}$ both equipped with counting measure, show that integrability of f in Fubini's Theorem cannot be removed from the hypothesis.