METU Department of Mathematics

	Gra	duate	Prelim	inary	Exam,	Analysis	Spring 2023	03 March 2023	10:00
Last Name: Name: : - Student No:					-	Signature	e :		
4 QUESTIONS							TOTAL 100 POINTS		
1	2	3	4			Dura	tion: 180 minu	tes .	Approximation of the second of

- (1) (15+15 points) Let (X, \mathcal{M}, μ) be a measure space. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of non-negative real valued measurable functions and f be a real valued measurable function on $(X, \mathcal{M}; \mu)$.
 - a) State Fatou's lemma.
 - b) Prove that if $f_n \to f$ in measure, then $\int_X f \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu$.
- (2) (20 points) Consider the measures μ, ν on $\mathcal{B}(\mathbb{R})$ given by

$$\mu(A) = \int_A \frac{1}{1+x^2} d\mathbf{m}$$
 and $\nu(A) = \int_A e^{-x^2} d\mathbf{m}$

where $\mathcal{B}(\mathbb{R})$ denotes the Borel σ -algebra of \mathbb{R} and m denotes the Lebesgue measure on $\mathcal{B}(\mathbb{R})$. Show that $\mu \ll \nu$ and find the Radon-Nikodym derivative $\frac{d\mu}{d\nu}$.

(Hint. Before understanding the absolute continuity relationship between μ and ν , try to understand whether or not we have $m \ll \nu$.)

(3) (15+15 points) In this question, you shall consider the product measure space

$$(\mathbb{R} \times \mathbb{R}, \ \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}), \ \mathbf{m} \times \boldsymbol{\mu})$$

where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} , m is the Lebesgue measure on \mathbb{R} and $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ is the measure given by

$$\mu(A) = \sum_{\substack{n \in A \\ n \in \mathbb{Z}}} \frac{1}{2^{|n|}}$$

a) Show that the set

$$D=\{(x,y)\in\mathbb{R}\times\mathbb{R}:\ x^2+y^2\leq 2,\ \mathrm{and},\ x\in\mathbb{Q}\ \mathrm{or}\ y\in\mathbb{Q}\}$$

is an element of the product σ -algebra $\mathcal{B}(\mathbb{R})\otimes\mathcal{B}(\mathbb{R})$.

- b) Find the area of D relative to the measure $m \times \mu$, that is, find $\iint_D 1 d(m \times \mu)$.
- (4) (10+10 points) Prove the following statements.
 - a) Let m^* be the Lebesgue outer measure on \mathbb{R} . Let $A,B\subseteq\mathbb{R}$. If A is non-Lebesgue measurable and $m^*(A\triangle B)=0$, then B is non-Lebesgue measurable.
 - b) There exists a dense subset of R of Lebesgue measure 2023.