METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

Topology

Duration: 3 hours

September 24, 2004

- **1.** Let τ be a Hausdorff topology on X. Let $Cl_{\tau}(A)$ denote the closure of $A \subseteq X$ with respect to the topology τ
 - (a) Prove that the family

 $\mathfrak{B} = \{ U - A \mid U \text{ is open, } Cl_{\tau}(A) \text{ is compact in } \tau \}$

constitutes a basis for a new topology τ^* on X.

- (b) Prove that τ^* is Hausdorff.
- (c) Prove that $\tau = \tau^*$ iff all compact subsets of τ are finite.
- **2.** If $A \times B$ is a compact subset of $X \times Y$ contained in an open set W in $X \times Y$, then there exists open sets $U \subseteq X$ and $V \subseteq Y$ such that $A \times B \subseteq U \times V \subseteq W$.
- **3.** Let $(X_i)_{i \in \mathbb{N}}$ be a sequence of Hausdorff infinite spaces, and $X = \prod_{i \in \mathbb{N}} X_i$ with the topology which has a base $\{\prod_{i \in \mathbb{N}} U_i : U_i \text{ open}\}$. Show that
 - (a) X is Hausdorff
 - (**b**) X is not seperable
 - (c) X has a closed discrete subspace which has the cardinality of \mathbb{R} .
- **4.** Let $X = (\mathbb{R}^2, T)$ where T is the topology on \mathbb{R}^2 which is induced by the following metric

$$d((p,q),(r,s)) = \begin{cases} |q-s| & \text{if } p = r \\ |q| + |p-r| + |s| & \text{if } p \neq r \end{cases}$$

- (a) Describe the relative topologies on $\mathbb{R} \times \{0\}$, $\{p\} \times \mathbb{R}$, $\mathbb{R} \times \{q\}$ for $q \neq 0$, and on an arbitrary line ax + by = c.
- (b) Show that X is path connected.
- (c) Find the number of path components of $X \setminus \{(p,q)\}$