METU - Mathematics Department Graduate Preliminary Exam

Topology

Duration : 3 hours

Fall 2005

1. Let $\left(X, d_{x}\right),\left(Y, d_{Y}\right)$ be two metric spaces and let $f: X \rightarrow Y$ be continuous in the usual ϵ, δ definition.
a) Prove that for every open set $V \subset Y$, the set $f^{-1}(V)$ is open in X.
b) Suppose that X is compact and $y_{0} \in Y-f(X)$. Prove that there is an open neighborhood V of $f(X)$ and a positive number r such that $V \cap B\left(y_{0} ; r\right)=\emptyset$. Here, $B\left(y_{0} ; r\right)=\left\{y \in Y: d_{Y}\left(y, y_{0}\right)<r\right\}$.
2. Let X be an infinite set with the finite complement topology (ie. the collection of open sets is $\tau=\{A: X-A$ is finite, or $A=\emptyset\}$).
a) Prove that every subset of X is compact.
b) Prove that X is T_{1} (ie. For every $x, y \in X$ with $x \neq y$, there are open sets U, V such that $x \in U-V$ and $y \in V-U)$.
Is X Hausdorff? Is X metrizable ?
c) If $X=\mathbb{R}$, find the closures and interiors of $(0,1],[2,3], \mathbb{Z}$.
3. a) Consider the following subsets of \mathbb{R}^{2} :

$$
\begin{aligned}
& X=\left\{\left(\pm \frac{1}{n}, y\right): n \geq 1,0 \leq y \leq 1\right\} \cup\{(x, 0):|x| \leq 1\} \cup\{(0, y): 0 \leq y \leq 1\} \\
& Y=\left\{\left(\pm \frac{1}{n}, y\right): n \geq 1,0 \leq y \leq 1\right\} \cup\{(x, 0):|x| \leq 1\} \cup\{(-2, y): 0 \leq y \leq 1\}
\end{aligned}
$$

Show that in the topology induced from \mathbb{R}^{2},
(i) X is connected but not locally connected, and
(ii) Y is locally connected.
b) Show that the image of a locally connected set under a continuous map is not necessarily locally connected.
Hint : Consider the map $f: Y \rightarrow X, f(a, b)= \begin{cases}(a, b) & \text { if } a \neq-2 \\ (0, b) & \text { if } a=-2 .\end{cases}$
c) Show that a compact Hausdorff space is locally connected if and only if every open cover of it can be refined by a cover consisting of a finite number of connected spaces.
4. a) Show that a topological space X is regular if and only if for each $x \in X$ and any neighborhood U of x, there is a closed neighborhood V of x such that $V \subset U$.
b) Let X be a regular space and let \mathcal{D} be the family of all subsets of the form $\overline{\{x\}}$ where $\overline{\{x\}}$ denotes the closure of the point $x \in X$. Show that \mathcal{D} is a partition of X.
c) Show that, in the quotient topology induced by the projection $p: X \rightarrow \mathcal{D}, p(x)=\overline{\{x\}}, \mathcal{D}$ is a regular Hausdorff space.

