METU - Department of Mathematics Graduate Preliminary Exam General Topology

Fall 2008

1.

- (A) In a topological space, is the intersection of two dense subsets always dense?
- (B) Let X be a topological space. Prove that the intersection of two open and dense subsets of X is open and dense.
- (C) Let \mathfrak{H} be the family subsets of X consisting of the open and dense subsets of X and the empty set. Prove that \mathfrak{H} is a topology on X.
- (D) Let \widetilde{X} be the topological space with carrier set X and topology \mathfrak{H} . Let Y be a topological space and \widetilde{Y} be defined similarly. If $f: X \longrightarrow Y$ is a continuous and open map, prove that $f: \widetilde{X} \longrightarrow \widetilde{Y}$ is continuous.

2.

- (A) Prove that a closed subset of a compact topological space is compact.
- (B) Prove that a compact subset of a Hausdorff topological space is closed.
- (C) $\mathfrak{H}, \mathfrak{H}'$ be topologies on X such that $\mathfrak{H}' \subseteq \mathfrak{H}$. If $K \subseteq X$ is compact with respect to \mathfrak{H} , prove that K is compact with respect to \mathfrak{H}' as well.
- (D) Suppose that \mathfrak{T} is a topology on X such that the topological space (X,\mathfrak{T}) is compact. If \mathfrak{S} is a topology on X which is strictly coarser than \mathfrak{T} , (that is $\mathfrak{S} \subseteq \mathfrak{T}$ yet $\mathfrak{S} \neq \mathfrak{T}$) prove that the topological space (X,\mathfrak{S}) is not Hausdorff. (*Hint*: There exists $C \subseteq X$ which is closed with respect to \mathfrak{T} but not closed with respect to \mathfrak{S} .)
- **3.** Let $f: X \to Y$ be a continuous closed surjection. Prove the following statements:
 - i) If X is T_1 then Y is T_1 .
 - ii) If X is normal then Y is normal.
 - iii) If Y is connected and $f^{-1}(y)$ is connected for each $y \in Y$ then X is connected.
 - iv) If $f^{-1}(y)$ is Lindelöf for each $y \in Y$ and Y is Lindelöf then X is Lindelöf,
 - **4.**Let $f: X \to Y$ be a closed open surjection.
- a) Let $\varphi: X \to (0,1)$ be a continuous function and $\Theta: Y \to \mathbb{R}$ be a function such that $\Theta(y) = \sup[\varphi(x)|f(x) = y]$ for each $y \in Y$. Show that θ is continuous.
 - b) Show that Y is regular (T_3) when X is regular and f is continuous.
 - c) Show that Y is $T_{3\frac{1}{2}}$ when X is $T_{3\frac{1}{2}}$ and f is continuous.