Preliminary Exam DURATION: 3 hours

1- Prove or disprove. $(X, Y \text{ are topological spaces}, A, B \text{ are subsets of a topological space } X, \overline{A}$ denotes the closure of the set A, A' denotes the set of limit points of the set A, A° denotes the interior of the set $A, \partial A$ denotes the boundary of the set A.)

- (a) $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$.
- (b) $f^{-1}(C') = (f^{-1}(C))'$ for any continuous function $f: X \to Y$ and for all $C \subset Y$.
- (c) If $A^{\circ} \neq \emptyset$, then $\overline{A^{\circ}} = \overline{A}$.
- (d) If A and B are connected and $A \cap B \neq \emptyset$, then $A \cap B$ is connected.
- (e) If X is connected and if A is a proper subset of X (that is $A \neq \emptyset$ and $A \neq X$), then $\partial A \neq \emptyset$.

2- Let

$$\mathcal{T} = \{(-\infty, a) \, | \, a \in \mathbb{R}\}.$$

- (a) Show that \mathcal{T} is a topology on \mathbb{R} .
- (b) Compare this topology with the standard topology on \mathbb{R} .
- (c) Let A = (-1, 1) and $B = (-\infty, 1]$. Find the interiors A° , B° and the closures \overline{A} , \overline{B} of the sets A, B in this topology.

3- Let X, Y be topological spaces where Y is Hausdorff. Let $A \subset X$ be dense in X, i.e. $\overline{A} = X$. Let $f, g: X \to Y$ be continuous functions such that f(a) = g(a) for all $a \in A$. Show that f = g.

4- Let X, Y be topological spaces, $a \in X$ and $C \subset Y$ be compact in Y. Suppose there is an open set N in $X \times Y$ such that $\{a\} \times C \subset N$. Show that there is an open set $U \subset X$ and an open set $V \subset Y$ such that $a \in U, C \subset V$ and $U \times V \subset N$.