TOPOLOGY TMS EXAM October 02 2015

Duration: 3 hours.

(1) Let $f: X \to Y$ be a map between topological spaces. Show that the following are equivalent.

- (i) f is continuous and open.
- (ii) $f^{-1}(\operatorname{Int}(B)) = \operatorname{Int}(f^{-1}(B))$ for all $B \subset Y$.
- (iii) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$ for all $B \subset Y$.

(2) Let (x_n) be a sequence of points of the space $\prod_{\alpha \in J} X_\alpha$ endowed with the product topology. Let $\pi_\beta \colon \prod_{\alpha \in J} X_\alpha \to X_\beta$ be the projection mapping associated with the index β . Show that the sequence (x_n) converges to x if and only if the sequence $\pi_\beta(x_n)$ converges to $\pi_\beta(x)$ for

Show that the sequence (x_n) converges to x if and only if the sequence $\pi_{\beta}(x_n)$ converges to $\pi_{\beta}(x)$ for each $\beta \in J$.

Is this true if you use the box topology instead of the product topology?

(3) Let X be the subspace of \mathbb{R}^2 defined by $X = \bigcup_{n=1}^{\infty} C_n$, where $C_n = \{(x, y) : (x - 1/n)^2 + y^2 = 1/n^2\}$ (X is the union of the circles with center (1/n, 0) and radius 1/n for n = 1, 2, 3, ...) Let Y be the quotient space formed by starting with \mathbb{R} and defining $x \sim y$ if either x = y or if $x, y \in \mathbb{Z}$. Prove that X and Y are not homeomorphic.

(4) Let X be metrizable. Show that the following are equivalent.

- (i) X is bounded under every metric that gives the topology of X.
- (ii) Every continuous function $\phi \colon X \to \mathbb{R}$ is bounded.
- (iii) X is limit point compact.