Topology TMS Exam (JUSTIFY YOUR ANSWERS)

Denote the closure and the interior of a set C in a topological space by \overline{C} and C° respectively.

1- (7+6+6+6 points) Prove/disprove the followings:

- (a) If X and Y are topological spaces, $A \subseteq X$ and $B \subseteq Y$, then $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$ in $X \times Y$.
 - (b) Every subspace of a Hausdorff space is Hausdorff.
 - (c) An infinite set X with the finite complement topology is metrizable.
 - (d) If A is connected then its interior A° is connected.
- **2-** (9+8+8 pts) (a) Show that $\phi = \{[a,b] \mid a \in \mathbb{Q} \text{ and } b \in \mathbb{R} \setminus \mathbb{Q}\}$ is a basis for a topology τ on \mathbb{R} .
 - (b) Show that the interval $(\pi, 5)$ is open in τ .
 - (c) Show that \mathbb{R} with the topology τ is not connected.

3-(5+20 pts)

- (a) Define the compactness of a topological space.
- (b) Show that if X is topological space and if there is an infinite squence A_1, A_2, A_3, \ldots of closed subsets of X such that
 - $A_{n+1} \subsetneq A_n$ for every $n \geq 1$, and

$$\bullet \bigcap_{n=1}^{\infty} A_n = \emptyset,$$

then X is not compact.

4- (25 pts) Let (X,d) be a metric space. For $x \in X$ and $A \subseteq X$, the distance between x and A is defined to be

$$d(x, A) = \inf\{d(x, a) : a \in A\}.$$

Prove that d(x, A) = 0 if and only if $x \in \overline{A}$.