20 February 2004

Graduate Preliminary Examination Topology Duration: 3 hours

- **1.** Consider a topological space X,Y and a continuous map $f:X\to Y$. a) Prove that $\overline{f^{-1}(B)}\subseteq f^{-1}(\overline{B})$ for any subset B of Y.
- b) Suppose that f is also closed and surjective. Prove that $\overline{B}=f(\overline{f^{-1}(B)})$ for any subset B of Y.
- c) Suppose that X is metrisable and f is a closed, surjective and continuous map. Prove that for any subset B of Y and any $y\in \overline{B}$ there exists a sequence $y_n \in B$ such that $\lim y_n = y$.

- a) Is the intersection of two dense subsets in a topological space always dense?
- b) Let X be a topological space. Prove that the intersection of two open dense subsets of X is open and dense.
- c) If $\tilde{\mathcal{H}}$ is the family of open dense subsets in X, prove that $\mathcal{H} = \tilde{\mathcal{H}} \cup \{\phi\}$ is a topology on X.
- d) Let \hat{X} be the topological space which consists of the set X with the topology $\mathcal H$ on it. Prove that a function $f:\hat X\to\mathbb R$ is continuous iff it is constant.
- 3. Let f be a continuous mapping of the compact space X onto the Hausdorff space Y. Show that any mapping g of Y into Z for which $g\circ f$ is continuous must itself be continuous.
- 4. Consider the cyclinder $S^1 \times I$ where S^1 the unit circle in \mathbb{R}^2 and I=[0,1]. Identify $S^1\times\{1\}$ to a point i.e. define an equivalence relation

 \sim on S^1 by letting $(u,1)\sim (v,1)$ for all $u,v\in S^1$ and letting all other elements in $S^1\times [0,1]$ be related only to itself. Show that the quotient space. $(S^1\times I)/\sim, \text{ the so called cone on } S^1, \text{ is homomorphic to the unit disc } D^2 \text{ in } \mathbb{R}^2.$