Graduate Preliminary Examination
Topology

Duration: 3 hours

1. Consider a topological space X, Y and a continuous map $f : X \to Y$.
 a) Prove that $f^{-1}(B) \subseteq f^{-1}(B)$ for any subset B of Y.
 b) Suppose that f is also closed and surjective. Prove that $B = f(f^{-1}(B))$
 for any subset B of Y.
 c) Suppose that X is metrizable and f is a closed, surjective and continuous map. Prove that for any subset B of Y and any $y \in B$
 there exists a sequence $y_n \in B$ such that $\lim y_n = y$.

2. a) Is the intersection of two dense subsets in a topological space always dense?
 b) Let X be a topological space. Prove that the intersection of two open dense subsets of X is open and dense.
 c) If \mathcal{H} is the family of open dense subsets in X, prove that $\mathcal{H} = \mathcal{H} \cup \{a\}$
 is a topology on X.
 d) Let X be the topological space which consists of the set X with the topology \mathcal{H} on X. Prove that a function $f : X \to \mathbb{R}$ is continuous if it is
 continuous.

3. Let f be a continuous mapping of the compact space X onto the
 Hausdorff space Y. Show that any mapping g of Y into X for which $g \circ f$ is
 continuous must itself be continuous.

4. Consider the cylinder $S^1 \times I$ where S^1 the unit circle in \mathbb{R}^2 and
 $I = [0, 1]$. Identify $S^1 \times \{1\}$ to a point i.e. define an equivalence relation
~ on S^1 by letting (u,1) ~ (v,1) for all u,v ∈ S^1 and letting all other elements in S^1 × [0,1] be related only to itself. Show that the quotient space (S^1 × D^2/~), the so-called torus on S^1, is homeomorphic to the unit disc D^2 in R^2.