METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

 Topology

 Topology

 Duration: 3 hours

 Duration: 3 hours}

February 21, 2005

1. A collection $\left\{f_{\alpha} \mid \alpha \in A\right\}$ of functions on a space X (to spaces X_{α}) is said to separate points from closed sets in X iff whenever B is closed in X and $x \notin B$, then for some $\alpha \in A, f_{\alpha}(x) \notin \overline{f_{\alpha}(B)}$. Then, prove that a collection $\left\{f_{\alpha} \mid \alpha \in A\right\}$ of continuous functions on a topological space X separates points from closed sets in X if and only if the sets $f_{\alpha}^{-1}(V)$, for $\alpha \in A$ and V open in X_{α}, form a base for the topology on X.
2. Let X be a compact space and let $\left\{C_{\alpha} \mid \alpha \in A\right\}$ be a collection of closed sets, closed with respect to finite intersections. Let $C=\cap C_{\alpha}$ and suppose that $C \subset U$ with U open. Show that $C_{\alpha} \subset U$ for some $\alpha \in A$.
3. Let (X, d) be a metric space.
(a) Consider a connected set $A \subset X$ and a continuous function f : $X \rightarrow \mathbb{R}$. Given $\alpha, \beta \in f(A) \subset \mathbb{R}$ with $\alpha \leq \beta$ prove that for every $t \in \mathbb{R}$ with $\alpha \leq t \leq \beta$ there exists $a \in A$ such that $f(a)=t$.
(b) For any $B \subset X$, prove that the function $g: X \rightarrow \mathbb{R}$ defined by

$$
g(x)=\operatorname{dist}(x, B)=\inf \{d(x, b) \mid b \in B\}
$$

for all $x \in X$ is continuous.
(c) Let $\Omega \subset X$ be open, connected and relatively compact (i.e. its closure is compact). Consider a continuous surjective function h : $\Omega \rightarrow \Omega$. Prove that there exists $w \in \Omega$ such that

$$
\operatorname{dist}(w, \operatorname{Bd}(\Omega))=\operatorname{dist}(h(w), \operatorname{Bd}(\Omega))
$$

(Hint : Consider the point $w \in \bar{\Omega}$ at which $\operatorname{dist}(w, \operatorname{Bd}(\Omega))$ achieves its maximum.)
4. Let $X=\mathbb{R} \cup\{\infty\}$ with the topology with respect to which a subset of X not containing ∞ is open if it is open in the usual sense, a subset
of X containing ∞ is open if its complement is the union of finitely many sequences convergent in the usual sense along with their limits.
(a) Prove that for any open set U in X the set $U \backslash\{\infty\}$ is open in \mathbb{R} (Hint: the terms of a convergent sequence in \mathbb{R} together with its limit is a closed set).
(b) Prove that $[0,1] \subset X$ is compact.
(c) Prove that $[0,1] \subset X$ is not closed. Is X Hausdorff?
(d)Prove that for every continuous $f: X \rightarrow X$ with $f(\infty)=\infty$, the set of fixed points $\{x \in X \mid f(x)=x\}$ is closed.

