GRADUATE PRELIMINARY EXAMINATION GENERAL TOPOLOGY

Duration: 3 hours February 10th, 2009

- 1. A topological space X is said to be hyperconnected if every nonempty open set in X is dense. A topological space Y is said to be ultraconnected if $\overline{\{a\}} \cap \overline{\{b\}} \neq \emptyset$ for every $a, b \in Y$.
 - a) Prove that a hyperconnected topological space is connected.
 - b) Prove that an infinite set with the cofinite topology is hyperconnected but not ultraconnected.
 - c) Let Z be a topological space with more than two points and $p \in Z$ where $U \subseteq Z$ is open iff U = Z or $p \notin U$. Prove that Z is ultraconnected but not hyperconnected.
 - d) Prove that an ultraconnected space Y is path connected by demonstrating that for any $a,b\in Y$ and any $p\in \overline{\{a\}}\cap \overline{\{b\}}$ the map $\lambda:[0,1]\to Y$ defined by

$$\lambda(t) = \begin{cases} a & \text{if } 0 \le t < 1/2 \\ p & \text{if } t = 1/2 \\ b & \text{if } 1/2 < t \le 1 \end{cases}$$

is continuous.

- 2. A continuous map $f: X \to Y$ is called a (topological) embedding if the map $\tilde{f}: X \to f(X)$ obtained by restricting the range of f is a homeomorphism (Here f(X) has the subspace topology).
 - a) Show that \mathbb{Q} cannot be embedded in \mathbb{Z} (where both has the subspace topology of \mathbb{R})
 - b) Let \mathbb{R}_c denote the topological space whose underlying set is \mathbb{R} and its open sets are complements of finite sets and the empty set.
 - (i) If $Y \subset \mathbb{R}_c$, describe open subsets of Y.
 - (ii) Show that \mathbb{R} with its usual topology cannot be embedded in \mathbb{R}_c .
- **3.** a) Let X and Y be metric spaces so that Y is compact. Show that the projection map $\pi_1: X \times Y \to X$, where $\pi_1(x,y) = x$ for all $(x,y) \in X \times Y$, is a closed map.
 - b) Let $X = Y = \mathbb{R}$ equipped with the usual metric. Show that the projection map $\pi_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ in Part (a) is <u>not</u> a closed map.
- **4.** Let $A = \{A_i | i \in I\}$ be a cover for topological space X such that each $p \in X$ has a neighborhood N such that $\{i | N \cap A_i \neq \phi\}$ is finite and $f: X \to Y$ be a function where Y is a topological space.
 - a) Show that $\overline{\bigcup_{i\in I} B_i} = \bigcup_{i\in I} \overline{B_i}$ where $B_i \subseteq A_i$ for each $i\in I$.
 - b) Show that f is continuous when $f|A_i$ continuous and A_i is closed for each $i \in I$.
 - c) Show that $\{i|K \cap A_i \neq \emptyset\}$ is finite for any compact subset K of X.
 - d) Show that the component of a point $p \in X$ (maximal connected subset which contains p) is open when A_i is connected for each $i \in I$.