Topology, February 2012 TMS EXAM

February 15, 2012

- 1. Let $\mathcal{T} = \{U \cup -U \mid U \subset \mathbb{R} \text{ is an open set in standard topology of } \mathbb{R}\}$. Show that \mathcal{T} is a topology on \mathbb{R} and find the interiors and the closures of the following intervals of \mathbb{R} in this topology: $A = (-2, 3), B = (-\infty, 3), C = (1, 3)$.
- 2. Let X be a topological space. Prove the given statement or give a counter example to show that it is not always true.
 - a) If $A \subset X$ is connected then \overline{A} is also connected.
 - b) If $A \subset X$ is path connected then \overline{A} is also path connected.
- **3.** Consider the space $X = \{a, b, c\}$ with the topology $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$.
 - a) Show that $Y = \{1, 2\}$ with topology $\{\emptyset, Y, \{1\}, \{2\}\}$ is not a quotient space of X.
 - b) Show that $Y = \{1, 2\}$ with topology $\{\emptyset, Y, \{1\}\}$ is a quotient space of X.
 - c) Consider the function $f: X \to Y$, f(a) = 1, f(b) = 1 and f(c) = 2, where Y has the indiscrete topology $\{\emptyset, Y\}$. Is f a quotient function? Is Y is a quotient space of X?
- **4.** Let X be a countable set (you may take, for example, $X = \mathbb{Z}_+$) equipped with the discrete topology. Find a homeomorphism $f: X^+ \to A$, where A is the subspace of \mathbb{R} given by

 $A = \{\frac{1}{n} \mid n = 1, 2, \dots\} \cup \{0\}$

and X^+ is the one point compactification of X.