1. Let $T = \{ U \cup U' \mid U \subset \mathbb{R} \}$ is an open set in standard topology of \mathbb{R}. Show that T is a topology on \mathbb{R} and find the interiors and the closures of the following intervals of \mathbb{R} in this topology: $A = (-2, 3)$, $B = (-\infty, 3)$, $C = (1, 3)$.

2. Let X be a topological space. Prove the given statement or give a counter example to show that it is not always true.

 a) If $A \subset X$ is connected then \overline{A} is also connected.

 b) If $A \subset X$ is path connected then \overline{A} is also path connected.

3. Consider the space $X = \{a, b, c\}$ with the topology $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$.

 a) Show that $Y = \{1, 2\}$ with topology $\{\emptyset, Y, \{1\}, \{2\}\}$ is not a quotient space of X.

 b) Show that $Y = \{1, 2\}$ with topology $\{\emptyset, Y, \{1\}\}$ is a quotient space of X.

 c) Consider the function $f : X \to Y$, $f(a) = 1$, $f(b) = 1$ and $f(c) = 2$, where Y has the indiscrete topology $\{\emptyset, Y\}$. Is f a quotient function? Is Y a quotient space of X?

4. Let X be a countable set (you may take, for example, $X = \mathbb{Z}_+ \cap \mathbb{R}$) equipped with the discrete topology. Find a homeomorphism $f : X^+ \to A$, where A is the subspace of \mathbb{R} given by

 $$A = \left\{ \frac{1}{n} \mid n = 1, 2, \ldots \right\} \cup \{0\}$$

 and X^+ is the one point compactification of X.