1. A topological space is *extremally disconnected* if and only if the closure of every open set is open. Show that for any topological space X the following are equivalent:

 (a) X is extremally disconnected,
 (b) Every two disjoint open sets in X have disjoint closures.

2. Show the following:

 (a) An open subset of a separable space is separable.
 (b) The product of countable number of separable spaces is separable.
 (c) The quotient space of a separable space is separable.

3. Let X, Y be topological spaces and $f : X \to Y$ be a continuous map. Consider the graph $G = \{(x, f(x)) : x \in X\}$ of f with the subspace topology of $X \times Y$.

 (a) Show that G is homeomorphic to X.
 (b) Show that G is closed if Y is Hausdorff.

4. Let X be a compact Hausdorff space and $f : X \to Y$ be a quotient map. Show that the following are equivalent:

 (a) Y is a Hausdorff space,
 (b) f is a closed map,
 (c) The set $\{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$ is closed in $X \times X$.