TOPOLOGY TMS EXAM February 11 2015

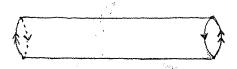
Duration: 3 hours.

- (1) Consider the set of real numbers \mathbb{R} . The collection of all open intervals (a,b) along with all sets of the form (a,b)-K where $K=\{\frac{1}{n}|n\in\mathbb{Z}^+\}$ is a basis for a topology on \mathbb{R} called the K-topology. Let \mathbb{R}_K denote \mathbb{R} with this topology.
- (a) Compare \mathbb{R}_K with the standard topology on \mathbb{R} .
- (b) Is \mathbb{R}_K compact? Is [0,1] a compact subspace of \mathbb{R}_K ?
- (c) Is RK Hausdorff?
- (d) Is \mathbb{R}_K regular?
- (e) Is the quotient space of \mathbb{R}_K obtained by collapsing the set K to a point Hausdorff? Is it T_1 ?

- (2) Let X be a compact metric space and suppose that $f: X \to X$ is an isometry, that is d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Prove that f is a homeomorphism.
- (3) Let \mathbb{R}^{ω} be the countably infinite product of \mathbb{R} with itself and let $A \subset \mathbb{R}^{\omega}$ be defined by

$$A = \{(x_i) \in \mathbb{R}^{\omega} | x_i = 0 \text{ for all but finitely many } i\}.$$

- (a) Prove that A is dense in \mathbb{R}^{ω} with the product topology.
- (b) Prove that A is not dense in \mathbb{R}^{ω} with the box topology.
- (4) Let $r: S^1 \to S^1$ be defined by r(x,y) = (-x,y). The Klein bottle K is the quotient space of $[0,1] \times S^1$ under the following equivalence relation: $(0,(x,y)) \sim (1,r(x,y))$ for all $(x,y) \in S^1$ and (t,(x,y)) is not equal to anything except itself for $t \neq 0,1$.



(a) Show that K is compact.

(b) Let $C_1 \subset K$ be (the image of) the circle $\{\frac{1}{3}\} \times S^1$, and let $C_2 \subset K$ be a small embedded circle inside $(\frac{1}{2}, \frac{3}{4}) \times S^1$. There is a continuous map $g \colon K \to \mathbb{R}^3$ as shown in the picture. The restriction of g to $K - C_1$ is injective so is the restriction to $K - C_2$, but $g(C_1) = g(C_2)$. Assuming that such a map g exists as described, use Urysohn's Lemma to construct a continuous map of K into $\mathbb{R}^3 \times \mathbb{R} = \mathbb{R}^4$ which is an embedding. You may assume that K is Hausdorff.

