

M E T U Department of Mathematics

Graduate Preliminary Exam, Analysis Fall 2020-2021				04.11.2020	10:00
Last Name :	Signature :				
Name :					
Student No :					
3 QUESTIONS			TOTAL 100 POINTS		
1	2	3	4	Duration: 180 minutes	

(1) (10+15 points) Let \mathbf{m} denote the Lebesgue measure on \mathbb{R} .

- Let $E \subseteq \mathbb{R}$ be non-Lebesgue measurable. Prove that $\mathbf{m}(\overline{E}) > 0$ where \overline{E} denotes the closure of E .
- Let $A \subseteq [0, 1]$ be Lebesgue measurable and $\mathbf{m}(A) = c > 0$. Prove that for every $0 < \alpha < c$ there exists a *closed* set $B_\alpha \subseteq A$ such that $\mathbf{m}(B_\alpha) = \alpha$.

(Hint. First argue that the map $f : [0, 1] \rightarrow [0, 1]$ given by $f(x) = \mathbf{m}(K \cap [0, x])$ is continuous for every measurable $K \subseteq [0, 1]$. Then try to use this fact together with approximation theorems regarding Lebesgue measurable sets.)

(2) (10+15+10+10 points) a) State Lebesgue's dominated convergence theorem.

In the remaining parts of this question, you will consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ with the measure ν given by

$$\nu(S) = \sum_{n \in S} \frac{1}{2^n}$$

b) Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be a bounded function. Prove that f is integrable and

$$\int_{\mathbb{N}} f \, d\nu = \sum_{k=0}^{\infty} \frac{f(k)}{2^k}$$

(Hint. Set $f_n(x) = f(x) \cdot \chi_{\{0,1,2,\dots,n\}}(x)$. Observe that $f_n \rightarrow f$ pointwise. Then apply an appropriate theorem to get the result.)

- Let $f : \mathbb{N} \rightarrow \mathbb{R}$ be a function and $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions from \mathbb{N} to \mathbb{R} . Show that if $f_n \rightarrow f$ in measure, then $f_n \rightarrow f$ pointwise.
- Let $g(x, k) = x^k$. Compute the integral

$$\int_{[1, 3/2] \times \mathbb{N}} g(x, k) \, d(\mathbf{m} \times \nu)$$

in the product measure space $(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), \mathbf{m} \times \nu)$ where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra of \mathbb{R} and \mathbf{m} is the Lebesgue measure. Explain each step of your computation by referring to the relevant theorems.

(3) (10+10+10 points) Let μ be the measure defined on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by

$$\mu(E) = \begin{cases} +\infty & \text{if } E \text{ is uncountable} \\ 0 & \text{if } E \text{ is countable} \end{cases}$$

and let \mathbf{m} denote the usual Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- Show that $\mathbf{m} \ll \mu$, that is, \mathbf{m} is absolutely continuous with respect to μ .
- Show that there exists no Borel measurable function $f : \mathbb{R} \rightarrow [0, +\infty)$ such that

$$\mathbf{m}(E) = \int_E f \, d\mu$$

- Explain why (a) and (b) together do not contradict the Radon-Nikodym theorem.